CHEMICAL REVIEWS

Review

Subscriber access provided by V. Vernadsky | National Library of Ukraine

Chemical and Pharmacological Research of the Plants in Genus Euphorbia

Qing-Wen Shi, Xiao-Hui Su, and Hiromasa Kiyota

Chem. Rev., 2008, 108 (10), 4295-4327 • DOI: 10.1021/cr078350s • Publication Date (Web): 25 September 2008

Downloaded from http://pubs.acs.org on December 24, 2008

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Chemical and Pharmacological Research of the Plants in Genus Euphorbia

Qing-Wen Shi,[†] Xiao-Hui Su,[†] and Hiromasa Kiyota*,[‡]

Division of Natural Medicine, School of Pharmaceutical Sciences, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei Province, the People's Republic of China, and Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiya, Aoba-ku, Sendai, 981-8555, Japan

Received August 14, 2007

Contents

1. Introduction	4296
2. Chemical Constituents	4297
2.1. Sesquiterpenoids (Table 1)	4297
2.2. Higher Diterpenoids	4297
2.2.1. ent-Abietanes, ent-Atisanes, ent-Kauranes,	4297
ent-Isopimaranes, and ent-Pimaranes	
(1 adies 1-9)	4000
2.2.2. Other Diterpendids	4298
2.3. Lower Diterpendids	4299
2.3.1. Caspanes (Table 10)	4299
2.3.2. Jatiophanes (Tables $11 - 26$)	4299
2.3.3. Latinyrainenes (Tables 29–33)	4299
2.3.4. Myrsinanes, Cyclomyrsinanes, and Premyrcinanes (Tables 34–43)	4299
235 Jatropholanes (Table 44)	4302
2.3.6 Daphnanes (Table 45)	4303
2.3.7 Tiglianes (Tables 46–48)	4305
2.3.8 Ingenanes (Tables 49 -52)	4305
2.3.9. Segetanes, Paralianes, Pepluanes, and	4305
Euphoractines (Tables 53–58)	
2.4. Triterpenoids (Tables 59-65)	4307
2.5. Steroids (Tables 66 and 67)	4308
2.6. Cerebrosides and Glycerols (Tables 68 and 69)	4310
2.7. Phenolics (Tables 70 and 71)	4311
2.8. Flavonoids (Table 72)	4311
2.9. Miscellaneous Compounds (Table 73)	4311
3. Hypothetical Biogenetic Route of the Rearranged	4313
Diterpenoids	
3.1. Biosynthesis from Jatrophanes	4313
3.2. Biosynthesis from Lathyranes	4314
4. Biological Activity	4314
4.1. Antiproliferative Activity	4314
4.2. Cytotoxicity	4316
4.3. Effects on the Cell Division	4316
4.4. DNA-Damaging Activity	4316
4.5. Modulatority of Multidrug Resistance	4316
4.6. Tumor Promoting Activity	4318
4.7. Pro-Inflammatory Activity	4318
4.8. Inhibition of Allergic Reactions	4318
4.9. Antimicrobial Activity	4319
4.10. Antidiarrheal Activity	4322
4.11. Antipyretic-Analgesic Activity	4322

* Corresponding author. E-mail: kiyota@biochem.tohoku.ac.jp. Tel. and Fax: +81-22-717-8785.
* Hebei Medical University.

* Tohoku University.

	4.12.	Molluscicidal and Antifeedant Activities	4323
	4.13.	Inhibitory Activity on the Mammalian Mitochondrial Respiratory Chain	4323
	4.14.	Antidipsogenic Activity	4323
	4.15.	Survival Effect on Fibroblasts PGE_2 In hibition Activity	4323
	4.16.	PEP Inhibitory Activity	4324
	4.17.	Urease Inhibitory Activity	4324
	4.18.	Angiotensin Converting Enzyme Inhibiting Activitiy	4324
	4.19.	Other Activities	4324
Ę	5. Co	nclusion	4324
6	6. Ac	knowledgments	4324
7	7. Re	ferences	4324

Figure 1. Flower of *Euphorbia pekinensis* Rupr.

10.1021/cr078350s CCC: \$71.00 © 2008 American Chemical Society Published on Web 09/25/2008

Qing-Wen Shi (b. 1964 in Cangzhou, Hebei Province), Professor and Director of Natural Medicine Division, deputy dean of School of Pharmaceutical Sciences, Hebei Madical University. He got his Bachelor degree from the School of Pharmaceutical Sciences, Hebei Madical University in 1985, Master degree from Shandong Medical University in 1990, and obtained his PhD from Tohoku University, Japan, in 2000. After postdoctoral and associate researchers work in Institut National de la Recherche Scientifique, Institut Armand-Frapier, Quebec University, Canada, he came back to China. He visited Tohoku University and McGill University as a visiting researcher in 2006, 2007, and 2008. His research interests are focused on the chemical constituents of medicinal plants and their biological activities.

Xiao-Hui Su (b. 1983 in Qinhuangdao, Hebei Province). She got her Bachelor and Master degrees from School of Pharmaceutical Sciences, Hebei Medical University in 2005 and 2008. Her master thesis is studies on the antitumour compounents of *Euphorbia lathyris* seeds and flowers of *Inula japonica*.

1. Introduction

The genus *Euphorbia* is the largest in the spurge family, comprising more than 2000 species (Figure 1).¹ Some species of the genus Euphorbia have been used as medicinal plants for the treatment of skin diseases, gonorrhea, migraine, and intestinal parasites and as wart cures.² The researched parts of the Euphorbia species include roots, seeds, latex, lactiferous tubes, stem wood, stem barks, leaves, and whole plants. Plants in the family Euphorbiaceae are well known for the chemical diversity of their isoprenoid constituents.³ Diterpenoids are the majority of the genus with many different core frameworks such as jatrophanes, lathyranes, tiglianes, ingenanes, myrsinols, etc. The triterpene alcohols found in the latex of *Euphorbia* species have been used as chemot-axonomic markers.^{4,5} In addition, sesquiterpenoids, phloracetophenones, cerebrosides, glycerols, flavonoids, and steroids were also obtained. The compounds isolated from genus Euphorbia and extracts perform many different activities,

Hiromasa Kiyota (b. 1966 in Sendai, Japan), Associate Professor of Biooganic Chemistry at Tohoku University, Japan. He received his B. S. degree (1989, soil science, Prof. Hidenori Wada) and M. S. degree (1991, organic chemistry, Prof. Kenji Mori and Associate Prof. Takeshi Kitahara) from the University of Tokyo. In 1991 he assumed the position of Assistant Professor at Prof. K. Mori's Laboratory, moved to Prof. Takayuki Oritani's Laboratory in 1994, and he was promoted to Associate Professor (Prof. Shigefumi Kuwahara) in 2002. In 1995 he received his PhD from the University of Tokyo (Prof. Kenji Mori and Prof. Takeshi Kitahara) about the synthesis of optically active insect pheromones. He joined the research group of Prof. Steven V. Ley at Cambridge University, U.K. as Visiting Academic (2001-2002). In 2003 he received The Japan Bioscience, Biotechnology and Agrochemistry Society Award for the Encouragement of Young Scientists. His research interests extend over a wide range of natural product chemistry, especially on the synthesis of biologically active compounds such as antibiotics, phytotoxins, plant hormones, insect pheromones, marine products, perfumery, etc.

including antiproliferation, modulability of multidrug resistance, cytotoxic activity, antimicrobial and antiinflammatory activity, etc. Biological activities including skin irritant, tumor promotion, and proinflammatory properties are attributed to the presence of specific classes of macro- and polycyclic diterpenes.^{6–9}

In this review article, we will summarize the phytochemical progress and list all of the compounds isolated from the

Table 2. ent-Abietanes-1

	12 12 13 13 14 15 15 15 15 15 15 15 15 15 15	0 R 0 11-13		5
no.	name	R	plant	ref
8	17-acetoxyjolkinolide A	OAc	E. fischeriana	13
9	jolkinolide A	Н	E. fischeriana	14
			E. sessiliflora	15
10			E. portulacoides	16
10	17-hydroxyjolkinolide A	OH	E. fischeriana	13
			E. acaulis E. acaulis	1/ 10
			E. cauaicifolia E. portulacoidas	18
			E. portulacolaes	15
11	iolkinolide B	н	E. sessilijiora F. fischeriana	14
11	Johannonde D	11	E. sessiliflora	15
			E. seguieriana	19
			E.ebracteolata	20
			E. portulacoides	16
12	17-hydroxyjolkinolide B	OH	E. fischeriana	14
13	17-acetoxyjolkinolide B	OAc	E.fischeriana	21
14	8α,14-dihydro-7-	Н	E. characias	22
1.7	oxojolkinolide E	011		22
15	ou,14-dinydro-/-	UН	E. semiperjoliata	23
	oxonenoscopilionde A		E characias	22
			L. charactus	

Table 3. ent-Abietanes-2

	- -								
no.	name	R_1	R_2	R_3	R_4	R_5	R_6	plant	ref
16 17 18	7β -hydroxy- <i>ent</i> -abieta-8(14),13(15)-dien-12\alpha,16-olide 7β ,9 β -dihydroxy- <i>ent</i> -abieta-8(14),13(15)-dien-12 α ,16-olide - <i>ent</i> -11 β -hydroxyabieta-8(14),13(15)-dien-12 β ,16-olide	H H H	H H H	H H H	OH OH H	H OH H	H H OH	E. seguieriana E. seguieriana E. fischeriana	19 19 13
19	jolkinolide E	Н	Н	Н	Н	Н	Н	E. fiafiana E. helioscopia E. characias	24 25 22
20	helioscopinolide A	Н	ОН	Н	Н	Н	Н	E. characias E. helioscopia E. pubescens E. semiperfoliata	22 25 26 23
21	helioscopinolide B	Н	Н	ОН	Н	Н	Н	E. characias E. helioscopia E. pubescens E. semiperfoliata	22 25 26 23
22 23 24 25	2α-hydroxyhelioscopinolide B helioscopinolide C helioscopinolide D helioscopinolide E	ОН =0 Н Н	OH OH =0 =0	H H =0 =0	H H H H	H H OH H	H H H H	E. helioscopia E. helioscopia E. calyptrate E. calyptrate	12 25 27 27

Table 4. ent-Abietanes-3

no.	name	R	plant	ref
26	7-oxo-ent-abieta-8,13(15)-dien-12α,16-olide	_	E. seguieriana	19
27	ebracteolatanolide A	_	E.ebracteolata	20
28	ebracteolatanolide B	_	E.ebracteolata	20
29	8α ,14-dihydro- 7β -hydroxyjolkinolide E	_	E. terracina	28
30	13β -hydroxy- <i>ent</i> -abiet-8(14)-en-7-one	_	E.fischeriana	21
31	langduin B:	_	E. fischeriana	13
	7β , 11β , 12β , 17 -tetrahydroxy- <i>ent</i> -abieta-8(14), $13(15)$ -dien-16, 12α -olide			
32	methyl 8β-hydroxy-12-oxo-ent-abieta-13,15(17)-dien-16-oate	Н	E. portulacoides	16
33	methyl 8β,11β-dihydroxy-12-oxo-ent-abieta-13,15(17)-dien-16-oate	OH	E. portulacoides	16

genus *Euphorbia* over the past few decades. Also included are the biological activities of compounds isolated in recent years and parts structure–activity relationships.

2. Chemical Constituents

2.1. Sesquiterpenoids (Table 1)

In 1997, Shi et al. reported the isolation of a new (1) and three known (2–4) sesquiterpenoids from *E. wangii.*¹⁰ This is the first investigation on sesquiterpenoids from the genus *Euphorbia*. In 2002, Fattorusso et al. isolated two novel bisnorsesquiterpene glycosides, euphorbiosides A (5) and B (6), as well as the aglycone of 5 (compound 7) from more polar fractions of *E. resinifera.*¹¹ In 2006, Zhang et al. isolated two known nor-sesquiterpenoids, 4,5-dihy-

droblumenol A and aglycone of icariside B2, from *E. helioscopia*.¹²

2.2. Higher Diterpenoids

2.2.1. ent-Abietanes, ent-Atisanes, ent-Kauranes, ent-Isopimaranes, and ent-Pimaranes (Tables 1–9)

Polycyclic diterpenoids with a common 6/6/6-tricyclic ring are also major constituents of *Euphorbia*. Higher diterpenoids originated from geranylgeranyl diphosphate by "concertinalike" cyclization, *ent*-abietanes, *ent*-atisanes, *ent*-kauranes, *ent*-isopimaranes, and *ent*-pimaranes, are introduced as follows.

The *ent*-abietanes from this species usualy contain fourth α,β -unsaturated γ -lactone ring. 2 α -Hydroxyhelioscopinolide

Table 5. *ent*-Atisanes

Table 6. ent-Trachylobanes

Table 7. ent-Kauranes

no.	name	R	plant	ref
45	16 β ,17-dihydroxy- <i>ent</i> -kauran-3-one	Н	E. characias	22
			E. portula- coides	16
			E. sieboldiana	34
			E. wallichii	35
46	17-acetoxy-16β-hy- droxy- <i>ent</i> -kauran-3- one	Ac	E. portula- coides	16

B (22), which was reported as an intermediate in the course of structure elucidation of helioscopinolide C (23), was isolated from natural sources for the first time in 2006 by Zhang et al.¹² The occurrence of *ent*-atisanes in plants from the genus *Euphorbia* is very rare and, apart from *E. fidjiana*, has so far been documented only in the roots of the Indian species *E. acaulis* Roxb.³⁷

2.2.2. Other Diterpenoids

In 1997, a manoyloxide derivative, 3β -hydroxy-2-oxomanoyloxide (52) was isolated from *E. segetalis* by Jakupovic et al.³⁸ Langduin C (53), a novel dimeric diterTable 8. ent-Isopimaranes and ent-Pimaranes

Table 9. Other Diterpenoids

no.

	11 - 1	1	
52	3β -hydroxy-2-oxomanoyloxide	E. segetalis	38
53 54	langduin D langduin C	E. fischeriana E. fischeriana	39 40
55	fischeria A	E. fischeriana	41

Table 10. Casbanes OH COOF 56 57 plant name ref no. 56 yuexiandajisu A E. ebracteolata 42 57 yuexiandajisu B E. ebracteolata 42

penoid, was isolated from the roots of *E. fischeriana*.⁴⁰ In 1999, fischeria A (**55**), a novel norditerpene lactone from *E. fischeriana*, was isolated from the rhizomes of *E. fischeriana* Steud.⁴¹

Scheme 1. Possible Biogenetic Route from Geranylgeranyl Diphosphate to Polycyclic and Macrocyclic Diterpenoids

Scheme 2. Proposed Biogenesis of a Pepluane 556 Starting from a Suitable Substituted Jatrophane 554

2.3. Lower Diterpenoids

Considerable attention has been paid to the macrocyclic diterpenoids derived from cembrane cation because of their high chemical diversity and therapeutically relevant bioactivity. "Euphorbiaceae diterpenoids" include casbanes, jatrophanes, lathyranes, myrsinanes, tiglianes, ingenanes, segetanes, paralianes, pepluanes, and euphoractines as shown below.

Scheme 3. Pinacol-Type Rearrangement of a Jatrophane to $1(15\rightarrow 14)$ Abeojatrophane (212–214)

2.3.1. Casbanes (Table 10)

Two bicyclic diterpenoids with a casbane skeleton (**56** and **57**) were isolated from *E. ebracteolata*.⁴²

2.3.2. Jatrophanes (Tables 11–28)

Euphorbiacea is a great rich source of jatrophane and the related diterpenoids. Jatrophanes with various oxygenation stages and stereoisomers are listed in the tables. These compounds are usually substituted with various acyl groups, such as acetyl, propanoyl, butanoyl, isobutyryl, benzoyl, tigloyl, nicotinoyl, angeloyl, etc., and are sometimes called jatrophane polyesters. Corea et al. carried out a molecular mechanic and dynamics calculation on amygdaloidins A-L (120–131).⁵⁶ The data obtained gave further information on the endo- and exo-type major conformations for the jatrophane diterpenoids. On the other hand, the stereochemistry of hemiacetal type jatrophane, esulatin C (187), at C-7, C-8, C-9, C-11, and C-13 could not be determined on the basis of NOESY correlations because of the high flexibility of this part of the molecule.⁵⁸ Compound **191** is the only jatrophane with 12,15-epoxy ring.⁶⁸ 17-Bishomojatrophanes forming 6or 8-membered lactone ring teracinolides (192-210) and salicinolide (211) were found. $^{28,38,73-76}$ Salicifoline (215) is the first representative of a new type of tricyclic diterpenoids involving a novel 5/8/8 fused ring system, that is, 12,17-cyclojatrophane.⁷⁶ Euphosalicin (216) also contains a new 9(10 \rightarrow 18) *abeo* jatrophane skeleton.⁶³

2.3.3. Lathyranes (Tables 29-33)

Lathyranes with a 5/11/3-membered ring are also very common in *Euphorbia* species. Several compounds are substituted with methoxy group (Tables 29 and 31). Phenyacetyl and methoxyphenylacetyl groups are rather diagnostic to lathyranes. Lathyranoic acid A (**260**) is the first secolathyrane diterpenoid in nature from *E. lathyris*.⁹¹ Lathyranone A (**261**) is a novel $1(15 \rightarrow 14)$ *abeo*lathyrane compound also isolated from *E. lathyris* (section 3).⁹¹

2.3.4. Myrsinanes, Cyclomyrsinanes, and Premyrcinanes (Tables 34–43)

Myrsinanes and cyclomyrsinanes are derived from lathyranes via premyrsinanes (section 3). In addition to the normal myrsinanes (6,12-cyclojatrophanes) with a 5/7/5-ring carbon framework, compounds with a hemiacetal ring, a 13,17epoxy ring, or a 10,13-epoxy ring are tabulated in Tables 34–39. the stereochemistry of all the frameworks and substituents are the same in myrsinanes. 9-Bishomomyrsinane **299** contains a δ -lactone ring.¹⁰⁷ The configuration of 12-position of eufobeotol (**306**) is reversed.¹¹¹ All the cyclomyrsinanes **300–305** have a 12,17-epoxy ring. Premyrsinanes **319–323** forms a rare acetyl hemiacetal moiety.

Table 12. Jatrophanes-2

no.	name	\mathbf{R}_1	\mathbf{R}_2	R_3	\mathbb{R}_4	R_5	plant	ref
61	2,5,14-triacetoxy-3-benzoyloxy-7-isobutyryloxy-9-nicotinoyloxy jatropha-6(17),11 <i>E</i> -diene-8,15-diol	Bz	Ac	iBu	Н	Nic	E. peplus	44
62	2,5,7,8,9,14-hexaacetoxy-3-benzoyloxyjatropha-6(17),11 <i>E</i> -dien-15-ol	Bz	Ac	Ac	Ac	Ac	E. peplus	44
63	2,5,9,14-tetraacetoxy-3- benzoyloxy-7-isobutyryloxyjatropha- 6(17),11 E-diene-8,15-diol	Bz	Ac	iBu	Н	Ac	E. peplus	44
64	2,5,7,14-tetraacetoxy-3-benzoyloxy-9-nicotinoyloxyjatropha-6(17),11 <i>E</i> -diene-8.15-diol	Bz	Ac	Ac	Н	Nic	E. peplus	44
65	2,5,7,9,14-pentaacetoxy-3-benzoyloxyjatropha-6(17),11 <i>E</i> -diene- 8.15-diol	Bz	Ac	Ac	Н	Ac	E. peplus	44
66 67 68	pepluanin A pepluanin B pepluanin C	Bz Bz Ac	Ac Ac iBu	Ac MeBu Bz	Ac H Ac	Nic Nic Ac	E. peplus E. peplus E. peplus	45 45 45

Table 13. Jatrophanes-3

no.	name	R ₁	R_2	plant	ref
69	(2 S*,3 S*,4 R*,5 R*,7 S*,8 R*,13 R*,14 R*,15 R*)-5,7,8,14-tet-	OAc	Ac	E. semiperfoliata	23
-	raacetoxy-3-benzoyloxy-15-hydroxyjatropha-6(17),11 <i>E</i> -dien-9-one	0'D			
70	$(2 \ S^*, 3 \ S^*, 4 \ R^*, 5 \ R^*, 7 \ S^*, 8 \ R^*, 13 \ R^*, 14 \ R^*, 15 \ R^*, 15 \ R^*, 15, 11$	OiBu	Ac	E. semiperfoliata	23
	E-dien-9-one				
71	(2 S*,3 S*,4 R*,5 R*,7 S*,8 R*,13 R*,14 R*,15 R*)-5,7-diacetoxy-	OH	Н	E. semiperfoliata	23
	3-benzoyloxy-8,14,15-trihydroxyojatropha-6(17),11 E-dien-9-one			1 0	
72	(2 S*,3 S*,4 R*,5 R*,7 S*,8 R*,13 R*,14 R*,15 R*)-5,7,8-triac-	OAc	Н	E. semiperfoliata	23
72	etoxy-3-benzoyloxy-14,15-dihydroxyjatropha-6(17),11 E-dien-9-one (2,5*2,5*4, p *5, p *7,5*8, p *12, p *14, p *15, p *) 5,7.14 triat	011	Α		22
15	$(2 5^{*}, 5 5^{*}, 4 K^{*}, 5 K^{*}, 7 5^{*}, 8 K^{*}, 15 K^{*}, 14 K^{*}, 15 K^{*}, 15 K^{*}, -5, 7, 14$ -triac- etoxy-3-benzovloxy-8 15-dihydroxyiatronba-6(17) 11 E-dien-9-one	OH	AC	E. semiperjoliala	23
74	$(2 S^*, 3 S^*, 4 R^*, 5 R^*, 7 R^*, 13 R^*, 14 R^*, 15 R^*) - 5.7, 14$ -triacetoxy-3-	Н	Ac	E. semiperfoliata	23
	benzoyloxy-15-hydroxyjatropha-6(17),11 E-dien-9-one			I J	
				E. hyberna subsp. insularis	46
75	(2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,7 <i>R</i> *,13 <i>R</i> *,14 <i>S</i> *,15 <i>R</i> *)-5,7,14-triacetoxy-3-	—	—	E. semiperfoliata	47
	benzoyloxy-15-hydroxyjatropha-6(17),11 E-dien-9-one				

Table 14. Jatrophanes-4

no.	name	R_1	R_2	R_3	\mathbb{R}_4	R_5	R_6	plant	ref
76	(2 S*,3 S*,4 R*,5 R*,7 S*,8 S*,9 S*,13 S*,15 R*)-3,9,15-trihydroxy-	Н	Н	iBu	OiBu	OiBu	Н	E. segetalis	38
	5,7,8-triisobutyryloxyjatropha-6(17),11 <i>E</i> -dien-14-one								
77	(2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>S</i> *,9 <i>S</i> *,13 <i>S</i> *,15 <i>R</i> *)-3,9,15-trihydroxy-	Н	Н	MeBu	OiBu	OMeBu	Н	E. segetalis	38
	7-isobutyryloxy-5,8-bis(2-methylbutanoyloxy)jatropha-6(17),11								
	E-dien-14-one								
78	(2 S*,3 S*,4 R*,5 R*,7 S*,8 S*,9 S*,13 S*,15 R*)-3,9,15-trihydroxy-	Н	Н	iBu	OiBu	OMeBu	Н	E. segetalis	38
	5,7-diisobutyryloxy-8-(2-methylbutanoyloxy)jatropha-6(17),11							-	
	E-dien-14-one								
79	1,5,8,9-tetraacetoxy-2-benzoyloxyacetoxy-7-isobutyryloxyjatropha-	OAc	BzOAc	Ac	OiBu	OAc	Ac	E. segetalis	38
	6(17),11E-dien-14-one							0	
80	5-acetoxy-3-benzoyloxy-9-cinnamoyloxy-15-hydroxyjatropha-	Н	Bz	Ac	Н	Н	Cinn	E. segetalis	38
	6(17),11E-dien-14-one							0	
81	5-acetoxy-3.9-dicinnamovloxy-15-hydroxyiatropha-6(17).11E-dien-	Н	Cinn	Ac	Н	Н	Cinn	E. segetalis	38
	14-one							0	

Table 15. Jatrphanes-5

		-4- 0								
no.	name	R ₁	R ₂	R ₃	R_4	R ₅	R ₆	R ₇	plant	ref
82	(2 <i>S</i> ,3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i>)-5,7,8- tris(2-methylbutanoyloxy)-3,9,15-trihydroxyjatropha-	Н	Н	MeBu	OMeBu	OMeBu	Н	Η	E. terracina	43
83	6(17),11-dien-14-one (2 <i>S</i> ,3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i>)-3,9,15- trihydroxy-5,7,8-triisobutyryloxyjatropha-6(17),11-dien-	Н	Н	iBu	OiBu	OiBu	Н	Η	E. terracina	43
84	14-one (2 S,3 S,4 S,5 R,7 S,8 S,9 S,11 E,13 S,15 R-3,9,15- trihydroxy-7-isobutyryloxy-5,8-bis(2-methylbutanoy-	Н	Н	MeBu	OiBu	OMeBu	Н	Н	E. terracina	43
85	loxy)jatropha-6(17),11-dten-14-one (2 S,3 S,4 S,5 R,7 S,8 S,9 S,11 E,13 S,15 R)-3,9,15- trihydroxy-5,7-diisobutyryloxy-8-(2-methylbutanoy- loxy)dtracha (417) 11 dian 14 org	Н	Н	iBu	OiBu	OMeBu	Н	Н	E. terracina	43
86	pepluanin D	Н	Ac	Ac	Ac	Н	Ac	Ac	E. peplus	45
87	pepluanin E	OAc	Bz	Ac	iBu	OH	Nic	Н	E. peplus	45
88	$2\alpha, 3\beta, 5\alpha, 8\alpha, 9\alpha, 15\beta$ -hexaacetoxy- 7β -benzoyloxyjatro-	OAc	Ac	Ac	Bz	OAc	Ac	Ac	E. turczaninowii	48
89	$\beta_{\beta}, \beta_{\alpha}, \beta_{\alpha}, 15\beta$ -pentaacetoxy- 7β -benzoyloxyjatropha- 6(17), 11 <i>E</i> -dien-14-one	Н	Ac	Ac	Bz	OAc	Ac	Ac	E. turczaninowii	48
90	3β , 5α , 7β , 8α , 9α , 15β -hexaacetoxy- 2α -benzoyloxyjatro-	OBz	Ac	Ac	OAc	OAc	Ac	Ac	E. turczaninowii	48
91	pha-6(17),11E-dien-14-one (2 S,3 S,4 S,5 R,7 S,8 S,9 S,13 S,15 R)-3-acetoxy- 5 9,15-tribydroxy-7-isobutyryloxy-8-(2-methylbutanoy-	Н	Ac	Н	iBu	OMeBu	Н	Η	E. terracina	43
	loxy)-jatropha-6(17),11 <i>E</i> -dien-14-one		_							
92	(2 S^* ,3 S^* ,4 R^* ,5 R^* ,7 S^* ,8 R^* ,13 S^* ,15 R^*)- 5,7,8,9,15-pentaacetoxy-3 β -benzoyloxyjatropha- 6(17) 11 <i>E</i> dian 14 one	Н	Bz	Ac	Ac	OAc	Ac	Ac	E. mongolica	49
93	(2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i>)-7,8,9- triacetoxy-3,15-dihydroxy-2,5-bis(2-methylbutanoy-	OMeBu	Н	MeBu	Ac	OAc	Ac	Η	E. obtusifolia	50
94	loxy)jatropha-6(17),11-dien-14-one (2 R,3 R,4 R,5 R,7 S,8 S,9 S,11 E,13 S,15 R)-7,8,9- trigger and the start by drawn 2	OiBu	Н	MeBu	Ac	OAc	Ac	Н	E. obtusifolia	50
	isobutyryloxy-5-(2-methylbutanoyloxy)jatropha-									
~-	6(17),11-dien-14-one	0.17				<u>.</u>				-
95	(2 R,3 R,4 R,5 R,7 S,8 S,9 S,11 E,13 S,15 R)-7,8,9- triacetoxy-3.15-dihydroxy-2-nicotinovloxy-5-(2-meth-	ONic	Н	MeBu	Ac	OAc	Ac	Н	E. obtusifolia	50
96	ylbutanoyloxy)jatropha-6(17),11-dien-14-one (2 R,3 R,4 R,5 R,7 S,8 S,9 S,11 E,13 S,15 R)-8,9-diac-	OMeBu	Н	MeBu	iBu	OAc	Ac	Н	E. obtusifolia	50
97	etoxy-3,15-dihydroxy-/-isobutyryloxy-2,5-bis(2-meth- ylbutanoyloxy)jatropha-6(17),11-dien-14-one (2 R.3 R.4 R.5 R.7 S.8 S.9 S.11 E.13 S.15 R)-2.8.9-	OAc	Н	MeBu	iBu	OAc	Ac	Н	E. obtusifolia	50
	triacetoxy-3,15-dihydroxy-7-isobutyryloxy-5-(2-meth- ylbutanoyloxy)jatropha-6(17),11-dien-14-one									
98	(2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i>)-7,9-diac- etoxy-8-benzoyloxy-5,8,15-trihydroxy-2,3-bis(2-meth- ylbutanoyloxy)iatropha-6(17) 11-dien-14-one	OMeBu	MeBu	Н	Ac	OBz	Ac	Н	E. obtusifolia	50
99	(2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i>)-8,9-diac- etoxy-5,15-dihydroxy-7-isobutyryloxy-2,3-bis(2-meth-	OMeBu	MeBu	Н	iBu	OAc	Ac	Η	E. obtusifolia	50
100	ylbutanoyloxy)jatropha-6(17),11-dien-14-one (2 R,3 R,4 R,5 R,7 S,8 S,9 S,11 E,13 S,15 R)-2,3,8,9- tetraacetoxy-15-hydroxy-5.7-dijsobutyryloxyiatropha-	OAc	Ac	iBu	iBu	OAc	Ac	Η	E. terracina	43
101	6(17),11-dien-14-one (2 R,3 R,4 R,5 R,7 S,8 S,9 S,11 E,13 S,15 R)-2,3,8,9-	OAc	Ac	Bz	iBu	OAc	Ac	Н	E. terracina	43
	tetraacetoxy-5-benzoyloxy-15-hydroxy-7-isobutyry- loxyiatropha-6(17) 11-dien-14-one									
102	(2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i> -2,5,8,9- tetraacetoxy-3-(benzoyloxyacetoxy)-15-hydroxy-7-	OAc	BzOAd	e Ac	iBu	OAc	Ac	Η	E. terracina	43
	isodutyryioxyjatropna-6(1/),11-dien-14-one								E. dendroides	51
103	euphodendroidin A	OAc	Н	iBu	Bz	OAc	Ac	Н	E. dendroides	51
104	euphodendroidin B	OAc	Н	MeBu	Bz	OAc	Ac	Н	E. dendroides	51
105	euphodendroidin C	UAc u	Н ц	Nic	Bz Bz	OAc	Ac	H U	E. dendroides	51
100	euphodendroidin E	п Н	п Ас	iBu	Bz	OAC	AC AC	п Н	E. dendroides	51
108	euphodendroidin F	ОН	Ac	iBu	Bz	OAc	Ac	Н	E. dendroides	51
109	euphodendroidin G	OAc	Nic	Ac	iBu	OAc	Ac	Н	E. dendroides	51
110	euphodendroidin H	H	Bz	Ac	iBu	OAc	Ac	H	E. dendroides	51
111 112	altotibetin A	UNIC	AC AC	іви Bz	AC AC	OAc OAc	INIC Ac	AC AC	E. aenaroides E. mongolica	51 49
114		11	<i>n</i> u	DL	AU	one	AU	nu	E. altotibetic	52
113	altotibetin B	Н	Ac	Bz	Bu	OAc	Ac	Ac	E. altotibetic	52
114	altotibetin C	OH	Ac	Bz	Ac	OAc	Ac	Ac	E. altotibetic	52
112		ОН	AC	DZ	Би	UAC	AC	AC	<i>Е. анонденс</i>	32

Table 16. Jatrophanes-6

No.	name	R_1	R_2	R ₃	R_4	plant	ref
116 117	esulatin D esulatin F	OAc OAc	Ac iBu	H OAc	Ac Ac	E. esula E. esula	53 54
118	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>R</i> *,9 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15-pentaacetoxy-9- nicotinovloxviatropha-6(17) 11 <i>E</i> -dien-14-one	OAc	Ac	Н	Nic	E. peplus	44
119	$3\beta,5\alpha,7\beta,15\beta$ -tetraacetoxy-9-nicotinoyloxyjatropha-6(17),11 <i>E</i> -dien-14-one	Н	Ac	Н	Nic	E. peplus	55

no.	name	R_1	R_2	R ₃	R_4	R ₅	R ₆	plant	ref
120	amygdaloidins A	Ac	Ac	Ang	Ang	Nic	Н	E. amygdaloides	56
121	amygdaloidins B	Ang	Н	Ang	Ac	Nic	Н	E. amygdaloides	56
122	amygdaloidins C	Hydrp	Η	Ang	Ac	Nic	Н	E. amygdaloides	56
123	amygdaloidins D	Ang	Н	Ang	Ac	Ac	Н	E. amygdaloides	56
124	amygdaloidins E	Ang	Н	Hydrp	Ac	Ac	Н	E. amygdaloides	56
125	amygdaloidins F	Ang	Η	Hydrp	Ac	Ac	Ac	E. amygdaloides	56
126	amygdaloidins G	Ang	Ac	H	Hydrp	Ac	Н	E. amygdaloides	56
127	amygdaloidins H	Hydrp	Ac	Н	Ang	Ac	Н	E. amygdaloides	56
128	amygdaloidins I	Ac	Hydrp	Н	Ang	Ac	Н	E. amygdaloides	56
129	amygdaloidins J	Hydrp	Ac	Ang	Н	Ac	Н	E. amygdaloides	56
130	amygdaloidins K	Ac	Hydrp	Ang	Н	Ac	Н	E. amygdaloides	56
131	amygdaloidins L	Ang	Ac	Hydrp	Н	Ac	Η	E. amygdaloides	56

Scheme 4. Proposed Biogenesis of Lactones (192–208) by Incorporation of a C2 Unit (from Acetate or Malonate) into a Jatrophane Precursor

Scheme 5. Proposed Biogenesis of Myrsinanes and Euphoractins from Epoxy Lathyranes

2.3.5. Jatropholanes (Table 44)

Lagaspholones A (**324**) and B (**325**) belong to jatropholanes are a new class of members with a 5,12-cyclojatrophane skeleton.¹¹⁵

Scheme 6. Proposed Biogenetic Routes of Lagaspholone A (324)

Table 18.Jatrophanes-8

	132-147 14	18				
no.	name	R ₁	R ₂	R ₃	plant	ref
132	(2 R,3 R,4 S,5 R,7 S,8 R,13 R,15 R)-2,3,5,7,15-pentaac- etoxy-8-isobutyryloxyjatropha-6(17),11 E-diene-9,14-dione	OAc	Ac	OiBu	E. semiperfoliata	23
133	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-tigloyloxyjatropha-6(17),11 <i>E</i> -diene-9,14-	OAc	Ac	OTig	E. paralias E. semiperfoliata	57 23
134	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-benzoyloxyjatropha-6(17),11 <i>E</i> -diene-9,14- dione	OAc	Ac	OBz	E. semiperfoliata	23
135	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-3,5,7,8,15- pentaacetoxy-2-nicotinoyloxyjatropha-6(17),11 <i>E</i> -diene- 9,14-dione	Nic	Ac	OAc	E. semiperfoliata	23
136	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,8,15- pentaacetoxy-7-benzoyloxyjatropha-6(17),11 <i>E</i> -diene-9,14- dione	OAc	Bz	OAc	E. semiperfoliata	23
137	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,8,15- pentaacetoxy-7-isobutyryloxyjatropha-6(17),11 <i>E</i> -diene- 0 14 dione	OAc	iBu	OAc	E. turczaninowii E. semiperfoliata	58 23
138	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-3,5,7,8,15- pentaacetoxy-2-benzoyloxyjatropha-6(17),11 <i>E</i> -diene-9,14- dione	OBz	Ac	OAc	E. semiperfoliata	23
139	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-hydroxyjatropha-6(17),11 <i>E</i> -diene-9,14- dione	OAc	Ac	OH	E. semiperfoliata	23
140	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,15-tetraac- etoxy-7-isobutyryloxyiatropha-6(17),11 <i>E</i> -diene-9,14-dione	OAc	iBu	Н	E. semiperfoliata	23
141	esulatin B	OAc	Ac	Н	E. seguieriana E. semiperfoliata	58 23
142	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-isobutyryloxyjatropha-6(17),11 <i>E</i> -diene- 9,14-dione	OAc	Ac	OiBu	E. paralias	59
143	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-angeloyloxyjatropha-6(17),11 <i>E</i> -diene- 9,14-dione	OAc	Ac	OAng	E. paralias	59
144	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-3,5,7,15- tetraacetoxy-8-isobutyryloxyjatropha-6(17),11 <i>E</i> -diene- 9,14-dione	Н	Ac	OiBu	E. paralias	59
145	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-(2-methylbutanoyloxy)jatropha-6(17),11 <i>E</i> -diene-9,14-dione	OAc	Ac	OMeBu	E. paralias	59
146	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)-2,3,5,7,15- pentaacetoxy-8-benzoyloxyjatropha-6(17),11 <i>E</i> -diene-9,14- dione	OAc	Ac	OBz	E. paralias	59
147	(2 <i>R</i> *,3 <i>R</i> *,4 <i>S</i> *,5 <i>R</i> *,7 <i>S</i> *,8 <i>R</i> *,13 <i>R</i> *,15 <i>R</i> *)- 2,3,5,7,8,15-hexaacetoxyjatropha-6(17),11 <i>E</i> -diene-9,14- dione	OAc	Ac	OAc	E. paralias	59
148	pubescenol: 5α , 8β , 15β -triacetoxy- 3β -benzoyloxy- 4α - hydroxy- 13β H-jatropha- $6(17)$, $11E$ -diene- 9 , 14 -dione	—	_	_	E. semiperfoliata E. pubescens	23 26

Scheme 7. Proposed Biogenesis of Lathyranoic Acid A (260)

2.3.6. Daphnanes (Table 45)

Resiniferatoxin (326) and 327 forms intramolecular orthoester with phenylacetic acid. 116,117,119 Langduin A (328),

possessing an isopropyl group at C-14 and carbonyl group at C-13, is presumably derived from a tigliane by opening of the cyclopropane ring.⁸

Table 19. Jatrophanes-9

	149-153 154			155				
no.	name	R_1	R_2	R_3	R_4	R ₅	plant	ref
149	3β , 5α , 7β , 8α , 15β -pentaacetoxyjatropha-6(17), $11E$ -diene-9,14-dione	Me	Н	Ac	OAc	Ac	E. turczani- nowii	48
150	(2 <i>S</i> ,3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,11 <i>E</i> ,13 <i>S</i> ,15 <i>R</i>)-3,5,8,15-tetraac- etoxy7-isobutyryloxyjatropha-6(17),11-diene-9,14-dione	Me	Η	Ac	OiBu	Ac	E. terracina	43
151	(2 S*,3 S*,4 Ř*,5 Ř*,7 S*,8 R*,13 S*,15 R*)-5,7,8-triacetoxy- 3-benzoyloxy-15-hydroxyjatropha-6(17),11 <i>E</i> -diene-9,14-di- one	Me	Н	Bz	OAc	Н	E. mongolica	49
152	(2 <i>S</i> *, 3 <i>S</i> *, 4 <i>R</i> *, 5 <i>R</i> *, 8 <i>R</i> *, 13 <i>S</i> *, 15 <i>R</i> *)-5,8,15-triac- etoxy-3-benzoyloxyjatropha-6(17),11 <i>E</i> -diene-9,14-dione	Н	Me	Bz	Н	Ac	E. hyberna	60
153	$3\beta,5\alpha,8\alpha,15\beta$ -tetraacetoxy- 7β -benzoyloxyjatropha-6(17),11 <i>E</i> -diene-9,14-dione	Me	Η	Ac	OBz	Ac	E. turczani- nowii	48
154 155	euphopubescenol esulatin E	_	_	_	_	_	E. pubescens E. esula	61 53

Table 20. Jatrophanes-10

no.	name	R_1	R ₂	R_3	R_4	plant	ref
156	kansuinin E	Н	Ac	OBz	Nic	E. kansui	62
157	esulatin A	OAc	iBu	OAc	Ac	E. esula E. salicifo- lia	58 63
158	$2\alpha, 3\beta, 5\alpha, 9$ -tetraacetoxy-11,12-epoxy- $7\beta, 8\alpha$ -diisobutyryloxyjatroph-6(17)-en- 14-one	OAc	iBu	OiBu	Ac	E. salicifo- lia	63
159	$2\alpha, 3\beta, 5\alpha, 6\beta, 9\alpha$ -pentaaacetoxy-11,12- epoxy- 8α -isobutyryloxyjatroph- $6(17)$ -en- 14-one	OAc	Ac	OiBu	Ac	E. salicifo- lia	63
160	kansuinin F	Н	Ac	OBz	Bz	E. kansui	64
161	kansuinin G	Н	Ac	Н	Nic	E. kansui	64
162	kansuinin C	Ac	Н	-	_	E. kansui	65
163	kansuinin B	Н	Ac	_	-	E. kansui	65

Table 21. Jatrophanes-11

no.	name	R	plant	ref
164	(2 <i>R</i> *,3 <i>S</i> *,4 <i>S</i> *,7 <i>S</i> *,8 <i>S</i> *,9 <i>S</i> *,13 <i>S</i> *,14 <i>S</i> *,15 <i>R</i> *)-8,9,14,15-tetraac- etoxy-3-benzovloxyiatropha-5 <i>E</i> ,11 <i>E</i> -dien-7-ol	Н	E. serrulata	66
165	(2 <i>R</i> *,3 <i>S</i> *,4 <i>S</i> *,7 <i>S</i> *,8 <i>S</i> *,9 <i>S</i> *,13 <i>S</i> *,14 <i>S</i> *,15 <i>R</i> *)-7,8,9,14,15-pen- taacetoxy-3-benzoyloxyjatropha-5 <i>E</i> ,11 <i>E</i> -diene	Ac	E. platyhyllos	67
166	14β -acetoxy- 3β -benzoyloxyjatropha- $5E$,11 <i>E</i> -diene- 7β ,9 α ,15 β -triol	_	E. helioscopia	68
167	7β ,9 α ,14 β -triacetoxy- 3β -benzoyloxyjatropha-5 <i>E</i> ,11 <i>E</i> -diene-15 β ,17-diol	—	E. helioscopia	68
168	14α , 15β -diacetoxy- 3β , 7β -dibenzoyloxy- 17 -hydroxy-(2β H, 13β H) iatropha- $5E$, $11E$ -dien- 9 -one	—	E. helioscopia	68
169	euphopubescene	_	E. pubescene	61

Table 22.Jatrophanes-12

no.	name	R_1	R_2	R_3	R_4	R_5	plant	ref
170 171 172	pubescene D 3β ,9 α ,15 β -triacetoxy-7 β -butanoyloxyjatropha-5 <i>E</i> ,11 <i>E</i> -dien-14-one euphoheliosnoid D	H Me -	Me H —	Ac Ac	Bz Bu —	H Ac —	E. pubescens E. pubescens E. helioscopia	69 70 12

Table 23. Jatrophanes-13

no.	name	R_1	R_2	R_3	plant	ref
173	(2 S,3 S,6 S,7 R,8 R,9 S,13 S,14 S,15 R)-7,8,9,14,15-pentaacetoxy-3-	OH	Me	Ac	E. serrulata	66
	benzoyloxyjatropha-4 E,11 E-dien-6-ol					
174	$(2 S^{*}, 3 S^{*}, 6 S^{*}, 7 R^{*}, 8 R^{*}, 9 S^{*}, 13 S^{*}, 14 S^{*}, 15 R^{*})$ -8,9,14,15-tet-	OH	Me	Bz	E. serrulata	66
	raacetoxy-3,/-dibenzoyloxyjatropha-4 E,11 E-dien-6-ol					
175	$(2 S^*, 3^* S, 6 R^*, 7 R^*, 8^* R, 9 S^*, 13 S^*, 14 S^*, 15 R^*) - 7, 8, 9, 14, 15$	Me	OH	Ac	E. platyphyl-	67
	pentaacetoxy-3-benzoyloxyJatropna-4 E,11 E-dien-o-ol				los	

Table 24. Jatrophanes-14

	ACO OAC 176-181 ACO	ÔAc	182		183				
no.	name	R_1	\mathbb{R}_2	R_3	R_4	R_5	R_6	plant	ref
176	(2 <i>R</i> *,3 <i>R</i> *,6 <i>S</i> *,7 <i>R</i> *,8 <i>R</i> *,9 <i>S</i> *,13 <i>S</i> *,15 <i>R</i> *)-6,7,8,9,15-pen- taacetoxy-3-benzoyloxy-2-hydroxyjatropha-4 <i>E</i> ,11 <i>E</i> -dien-14- one	Me	ОН	Ac	Me	Н	Ac	E. serrulata	66
177	(2 <i>R</i> *,3 <i>S</i> *,6 <i>S</i> *,7 <i>R</i> *,8 <i>R</i> *,9 <i>S</i> *,13 <i>S</i> *,15 <i>R</i> *)-7,8,9,15-tetraac- etoxy-3-benzoyloxy-6-hydroxyjatropha-4 <i>E</i> ,11 <i>E</i> -dien-14-one	Н	Me	Η	Me	Η	Ac	E. serrulata E. platyphyl-	66 67
								los	
178	(2 <i>R</i> *,3 <i>S</i> *,6 <i>S</i> *,7 <i>R</i> *,8 <i>R</i> *,9 <i>S</i> *,13 <i>S</i> *,15 <i>R</i> *)-6,7,8,9,15-pen- taacetoxy-3-benzoyloxyjatropha-4 <i>E</i> ,11 <i>E</i> -dien-14-one	Н	Me	Ac	Me	Н	Ac	E. serrulata	66
179	(2 R,3 R,6 R,7 R,8 R,9 S,13 S,15 R)-2,7,8,9-tetraacetoxy-3- benzovloxy-6,15-dihydroxyiatropha-4 E,11 E-dien-14-one	Me	OAc	Η	Me	Н	Η	E. serrulata	71
180	(2 R,3 R,6 S,7 R,8 R,9 S,13 S,15 R)-2,6,7,8,9,15-hexaacetoxy- 3-henzovloxyiatropha-4 E, 11 E-dien-14-one	Me	OAc	Ac	Me	Н	Ac	E. serrulata	71
181	serrulatin B	Me	Н	Ac	Н	Me	Ac	E. serrulata	72
182	(2 R, 5 S, 6 S, 7 R, 8 R, 9 S, 13 R, 15 R)-6, 7, 8, 9, 15-pentaacetoxy- 3-benzovloxyiatropha-4 Z, 11 E-dien-14-one	_	—	_	—	_	_	E. serrulata	73
183	(2 <i>S</i> *,3 <i>S</i> *,6 <i>S</i> *,7 <i>R</i> *,8 <i>R</i> *,9 <i>S</i> *,13 <i>S</i> *,14 <i>S</i> *)-6,7,8,9,14-pen- taacetoxy-3-benzoyloxyjatropha-1(15),4 <i>Z</i> ,11 <i>E</i> -triene	-	—	-	_	_	_	E. serrulata	73

2.3.7. Tiglianes (Tables 46-48)

12-*O*-Tetradecanoylphorbol 12-acetate (TPA) is a famous tumor promotor. A number of phorbol derivatives were isolated from *Euphorbia* species. Marco et al. presumed that **336** was not a natural product but rather an epimerization product of **331** during the isolation and chromatographic separation.⁵⁰ The C-6 of **358** and **359** is an aldehyde group.²¹

2.3.8. Ingenanes (Tables 49-52)

Ingenane diterpenoids have a very unique structural feature, that is, bicyclo[4.4.1]undecane core adopts a highly strained *inside-outside* skeleton. A large number of deriva-

tives have been reported from this genus. Milliamine F isomer (**381**), isolated form *E. leuconeura*, has a unique [(benzamido)benzamido]benzoyl substituent.¹²⁸

2.3.9. Segetanes, Paralianes, Pepluanes, and Euphoractines (Tables 53–58)

The skeleton of these 5/7/6/5-rings could be formed by transannular ring formation between 8,12- and 13,17-positions of the 12-membered ring of jatrophanes. Presegetanin (**436**) and **435** belong to a new class of carbon skeleton, presumably a biogenetic intermediate from jatrophanes to segetanes.^{38,138} Paralianes and pepluanes are

Table 25. Jatrophanes-15 (Jatrophanes with a Hemiacetal or a Tetrahydrofuran Ring)

no.	name	R ₁	R ₂	R ₃	plant	ref
184	kansuinin A	Н	Ac	Ac	E. kansui	65
185	kansuinin H	OH	Ac	Ac	E. kansui	64
186	kansuinin D	Н	Ac	Nic	E. kansui	62
187	esulatin C	_	_	—	E. esula	58
188	serrulatin A: (2 <i>S</i> ,3 <i>S</i> ,6 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,13 <i>R</i> ,14 <i>S</i> ,15 <i>S</i>)- 8,14,15-triacetoxy-3-benzoyloxy-6,9-epoxy-7-tigloyloxyja- tropha-4 <i>Z</i> ,11 <i>E</i> -dien-9-ol	Н	Me	Tig	E. serrulata	72
189	(2 <i>R</i> ,3 <i>S</i> ,6 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,13 <i>R</i> ,14 <i>S</i> ,15 <i>S</i>)-8,14,15-triac- etoxy-3-benzoyloxy-6,9-epoxy-7-tigloyloxyjatropha-4 <i>E</i> ,11 <i>E</i> -dien-9-ol	Me	Н	Tig	E. serrulata	71
190	(2 R,3 S,6 S,7 R,8 S,9 R,13 R,14 S,15 R)-8,14,15-triac- etoxy-3,7-dibenzoyloxy-6,9-epoxyjatropha-4 E,11 E-dien- 9-ol	Me	Н	Bz	E. platyhyllos	67
191	7β ,9 α ,14 β -triacetoxy-3 β -benzoyloxy-12 β ,15 β -epoxyjatroph-5 <i>E</i> -en-11 β -ol	_	—	—	E. helioscopia	68

Table 26. Jatrophanes-16 (17-Bishomojatrophanes-1)

no.	name	R_1	R_2	R_3	R_4	R ₅	R_6	R_7	plant	ref
192	terracinolide A	Н	Ac	Ac	Bz	iBu	Н	Ac	E. terracina	73
									E. segetalis	38
193	terracinolide B	Н	Ac	Ac	Ac	iBu	Η	Ac	E. terracina	73
									E. dendroides	74
104						'D			E. segetalis	38
194	terracinolide C	Н	Ac	Н	Ac	1Bu	Н	Ac	E. terracina	75
									E. dendroides	/4
105	terreginglide D	ц	4.0	10	Da	10	п	10	E. segetalls E. torraging	38 75
195	terracinolide D	п	Ac	Ac	DZ Dz	AC Dr	п	AC	E. terracina E. terracina	75
190		11	AC	AC	DZ	L1	11	AC	E. lerracina E. segetalis	38
197	terracinolide F	н	Ac	Ac	iBu	iBu	н	Ac	E. segetutis F. terracina	75
177		11	110	110	ibu	iDu	11	110	E. dendroides	74
198	terracinolide G	Н	Ac	Ac	Ac	iBu	Н	Н	E. terracina	75
199	terracinolide H	Н	Ac	Н	iBu	iBu	Н	Ac	E. segetalis	38
200	terracinolide J	Н	Ac	Ac	iBu	iBu	Н	Н	E. dendroides	74
201	terracinolide K	Н	Η	Ac	Ac	iBu	Η	Ac	E. dendroide	74
202	terracinolide L	Н	Η	Ac	iBu	iBu	Η	Ac	E. dendroides	74
203	13α-hydroxyterracinolide B	Н	Ac	Ac	Ac	iBu	OH	Ac	E. segetalis	38
									E. dendroides	74
									E. terracina	28
204	13α-hydroxyterracinolide F	Н	Ac	Ac	iBu	iBu	OH	Ac	E. dendroides	74
205	13α-hydroxyterracinolide G	Н	Ac	Ac	Ac	1Bu	OH	Н	E. terracina	28
206	15 O decentral 12 or hudrowy terms aim alide A	TT	4.0	4.0	D-	:D.,	OU	TT	E. dendroides	74
200	13-O-deacetyi-150-flydroxyterracinolide A	П	Ac	Ac	BZ	1BU ;D.,	OH	п	E. terracina E. socialis	28
207	150-nydroxyterrachionde 1	OAC	AC	AC	AC	IDU	Оп	п	E. segeiaiis E. terracina	28
208	terracinolide I	OAc	Ac	Ac	Ac	iBu	н	н	E. terracina F segetalis	38
209	isoterracinolide A	iBu	_	_	_		_	_	E. segetatis E. terracina	28
210	isoterracinolide B	Pr	_	_	_	_	_	_	E. terracina	28
211	salicinolide	-	-	-	-	-	-	-	E. salicifolia	76

Table 27. Jatrophanes-17 [1(15→14) Abeojatrophanes]

Table 28. Jatrophanes-18 [12,17-Cyclojatrophane and $9(10 \rightarrow 18)$ Abeojatrophane]

derived from jatrophanes, and euphoractines are from lathyranes (section 3). Compound **445** possesses a rare aromatized D-ring.³⁸

2.4. Triterpenoids (Tables 59–65)

Tetracyclic, pentacyclic triterpenoids, some secotriterpenoids along with several other kinds triterpenoids are isolated from many plants of Euphorbia species. Among lanosterol type compounds, antiquol B (460) has a rare $19(10 \rightarrow 9)$ abeoeuphane skeleton.¹⁴⁴ Several oleanes with shifted methyl and desmethyl groups (477-482) were isolated.^{20,26,146,150,153} 27-Nor-3β-hydroxycycloartan-25-one (496), (22 E)-25,26,27trinor-3 β -hydroxycycloart-22-en-24-al (498) and 25,26,27trinor-3 β -hydroxycycloartan-24-al (499) are rare norderivatives reported first in this species.¹³⁶24-Hydroperoxycycloart-25-en-3 β -ol (500) is the only C-24 hydroperoxy compound.¹³⁶ Peplusol (**508**) is an acyclic triterpene alcohol.¹⁴⁵ Anhydrobisfarnesol (509), an anhydro derivative of bisfarnesol, has been isolated from the latex of E. laterifiora. Its structure was confirmed by the synthesis using a photochemical isomerization.¹⁵⁸

Table 29. Lathyranes-1

$0^{20} \stackrel{\stackrel{_{\scriptstyle 20}}{_{\scriptstyle 5}} , OR_5}{H^{13}} \stackrel{_{\scriptstyle 15}}{_{\scriptstyle 12}} \stackrel{_{\scriptstyle 15}}{_{\scriptstyle 15}} \stackrel{_{\scriptstyle 15}}{_{\scriptstyle 16}} \stackrel{_{\scriptstyle 15}}{_{\scriptstyle 10}} \stackrel{_{\scriptstyle 16}}{_{\scriptstyle 10}} \stackrel{_{\scriptstyle 17}}{_{\scriptstyle 10}} \stackrel{_{\scriptstyle 10}}{_{\scriptstyle 10}} $	O o o	MeO
R_1O R_2O OR_3	PhAc	А

no.	name	R_1	\mathbf{R}_2	R_3	R_4	R_5	plant	ref
217	3β , 12 α -diacetoxy-19-hydroxy-7 α , 8 α -ditigloyloxyingol	Ac	Tigl	Tigl	OH	Ac	E. acrurensis	77
218	3β , 12 α , 19-triacetoxy-7 α -hydroxy-8 α -ditigloyloxyingol	Ac	Н	Tigl	OAc	Ac	E. acrurensis	77
219	12α , 19-diacetoxy- 3β , 7α -hydroxy- 8α -ditigloyloxyingol	Η	Н	Tigl	OAc	Ac	E. acrurensis	77
220	3β , 8α , 12α -triacetoxy- 7α -isovaleryloxyingol	Ac	iVal	Ac	Н	Ac	E. acrurensis	77
221	3β ,8 α ,12 α -triacetoxy-7 α -angeloxyingol	Ac	Ang	Ac	Н	Ac	E. acrurensis	77
222	3β , 12α -diacetoxy- 7α , 8α -ditigloyloxyingol	Ac	Tigl	Tigl	Н	Ac	E. acrurensis	77
223	3β , 8α , 12α -triacetoxy- 7α -tigloyloxyingol	Ac	Tigl	Ac	Н	Ac	E. acrurensis	77
224	3β , 12 α -diacetoxy- 8α -methoxy- 7α -tigloyloxyingol	Ac	Tigl	Me	Н	Ac	E. acrurensis	77
225	3β , 12α -triacetoxy- 7α -hydroxy- 8α -tigloyloxyingol	Ac	Н	Tigl	Н	Ac	E. acrurensis	77
							E. lactea	78
226	3β , 7α , 12α -triacetoxy- 8α -isovaleryloxyingol	Ac	Ac	iVal	Н	Ac	E. tirucalli	79
227	3β , 7α , 12α -triacetoxy- 8α -benzoyloxyingol	Ac	Ac	Bz	Н	Ac	E. nivulia	80
							E. kamerunica	81
							E. hermentiana	82
228	3β , 12α -diacetoxy- 7α -angeloyloxy- 8α -methoxyingol	Ac	Ang	Me	Н	Ac	E. nivulia	80
							E. hermentiana	81
229	12α -acetoxy- 7α -angeloyloxy- 3β -hydroxy- 8α -methoxyingol	Н	Ang	Me	Н	Ac	E. nivulia	80
							E. ingens	83
230	3β , 12α -diacetoxy- 8α -benzoyloxy- 7α -hydroxyingol	Ac	Н	Bz	Н	Ac	E. nivulia	80
231	3β , 12α -diacetoxy- 7α -benzoyloxy- 8α -nicotinoyloxyingol	Ac	Bz	Nic	Н	Ac	E. nivulia	80
232	3β -acetoxy- 7α -angeloyloxy- 12α -hydroxy- 8α -methoxyingol	Ac	Ang	Me	Н	Н	E. nivulia	84
233	3β , 12 α -diacetoxy-8 α -methoxy-7 α -hydroxyingol	Ac	Н	Me	Н	Ac	E. nivulia	84
234	3β , 12 α -diacetoxy-7 α -angeloyloxy-8 α -hydroxyingol	Ac	Ang	Н	Н	Ac	E. nivulia	84
235	3β , 12α , 19 -triacetoxy- 8α -nicotinoyloxy- 7α -phenylacetoxyingol	Ac	PhAc	Nic	OAc	Ac	E. poisonii	85
236	3β , 12α , 19 -triacetoxy- 8α -hydroxy- 7α -phenylacetoxyingol	Ac	PhAc	Н	OAc	Ac	E. poisonii	85
237	3β ,19-diacetoxy- 8α ,12 α -dihydroxy- 7α -phenylacetoxyingol	Ac	PhAc	Н	OAc	Н	E. poisonii	85
238	7α , 8α , 12α -triacetoxy- 3β -phenylacetoxyingol	PhAc	Ac	Ac	Н	Ac	E. officinarum	86
239	7α , 8α , 12α -triacetoxy- 3β -(<i>p</i> -methoxyphenyl)acetoxyingol	А	Ac	Ac	Н	Ac	E. officinarum	86
240	7α , 12α -diacetoxy- 8α -methoxy- 3β -phenylacetoxyingol	PhAc	Ac	Me	Н	Ac	E. officinarum	86

Table 30. Lathyranes-2

no.	name	R	plant	ref
241	3β , 7α , 8α , 12α -tetraacetoxy-2- <i>epi</i> -ingol	Ac	E. portulacoides	16
242	3β , 8α , 12α -triacetoxy- 7α -isobutanoyloxy- 2 - <i>epi</i> -ingol	iBu	E. portulacoides	16
243	3β , 8α , 12α -triacetoxy- 7α -methylbutanoyloxy- 2 - <i>epi</i> -ingol	MeBu	E. portulacoides	16
244	3β ,8 α ,12 α -triacetoxy-7 α -benzoyloxy-2- <i>epi</i> -ingol	Bz	E. portulacoides	16

Table 31. Lathyranes-3.

no.	name	R_1	R_2	R ₃	R_4	plant	ref
245	(2 <i>R</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,9 <i>S</i> *,11 <i>S</i> *,15 <i>R</i> *)-5α,15β-diacetoxy- 3β-benzoyloxylathyra-6(17),12 <i>E</i> -dien-14-one	Me	Н	Bz	Ac	E. hyberna	60
246	(2 <i>R</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,9 <i>S</i> *,11 <i>S</i> *,15 <i>R</i> *)-3,5,15-triacetoxy- lathyra-6(17),12 <i>E</i> -dien-14-one	Me	Н	Ac	Ac	E. hyberna	60
	• • •					E. villosa	87
247	Euphorbia factor L ₃	Η	Me	Bz	Ac	E. lathyris	88
248	Euphorbia factor L_8	Н	Me	Nic	Ac	E. lathyris	88
249	(2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,9 <i>S</i> *,11 <i>S</i> *,15 <i>R</i> *)-5-acetoxy-3-benzoy- loxy-15-hydroxylathyra-6(17),12 <i>E</i> -dien-14-one	Н	Me	Bz	Н	E. lathyris	89
250	(2 Š*,3 Š*,4 R*,5 R*,9 S*,11 S*,15 R*)-5,15-diacetoxy-3- phenylacetoxylathyra-6(17),12 <i>E</i> -dien-14-one	Н	Me	PhAc	Ac	E. pithyusa subsp. cupanii	90

Table 32. Lathyranes-4

no.	name	R_1	R_2	plant	ref
251	Euphorbia factor L ₂	Ac	_	E. lathyris	88
252	Euphorbia factor L ₁₁	Н	_	E. lathyris	91
253	Euphorbia factor L ₁₀	C ₅ H ₁₁ CO	Н	E. lathyris	92
254	$15\overline{\beta}$, 17-diacetoxy- 3β -benzoyloxyisolathyrol	Bz	Ac	E. lathyris	93
255	(2 R*,3 S*,4 R*,5 R*,6 R*,11 S*,15 R*)-3-acetoxy-15-benzoyloxy-	_	_	E. villosa	87
	5,6-epoxylathyr-12 <i>E</i> -en-14-one				
256	(2 R*,4 R*,7 R*,8 S*,9 S*,11 R*,12 S*,13 S*,15 R*)-7,12-diacetoxy-	_	_	E. segetalis	93
	8-angeloyloxy-4,15-epoxylathyr-5 <i>E</i> -ene-3,14-dione			_	
257	Euphorbia factors L ₁	-	_	E. lathyris	88
				E. pithyusa subsp. cupanii	90
258	15β -cinnamoyloxy- 3β , 5α -dihydroxylathyra- $6Z$, 12 <i>E</i> -dien-14-one	Cinn	Н	E. kansuensis	94
259	15β -cinnamoyloxy- 3β , 5α ,20-trihydroxylathyra- $6Z$,12 <i>E</i> -dien-14-one	Cinn	OH	E. kansuensis	94

Table 33. Lathyranes-5 (Rearranged Lathyranes)

2.5. Steroids (Tables 66 and 67)

Tanaka et al. isolated several ergostane-type steroids (**510**-**515**) from *E. chamaesyce*.^{149,151} 5 α -Stigmastane-3 β ,6 α -diol (**517**) and 5 α -stigmastane-3 β ,5,6 β -triol (**519**) were found to be obtained in *E. boetica*.¹¹¹ In 2002, Rahman et al. reported the isolation of a new geniculatoside (**519**) from aerial parts of *E. geniculata* Linn.¹⁵⁹ In addition, β -sitosterol and daucosterol are present in many plants of this species, such

Table 34. Myrsinanes-1

			1120	5				
no.	name	R_1	R_2	R ₃	R_4	R ₅	plant	ref
262	13-deacetylisodecipidone	Bu	Н	Ac	Н	Ac	E. decipiens	96
263	13-deacetylisodecipinone	Bz	Н	Ac	Н	Ac	E. decipiens	96
264	isodecipidone	Bu	Н	Ac	Ac	Ac	E. decipiens	96
265	17-acetoxy-13-deacetyldecipinone	Bz	Ac	Ac	Н	Ac	E. decipiens	97
266	13-deacetyldecipinone	Bz	Ac	Ac	Н	Н	E. decipiens	97
267	13-deacetyldecipidone	Bu	Ac	Ac	Н	Н	E. decipiens	97
268	decipinone	Bz	Ac	Ac	Ac	Н	E. decipiens	98,99
269	decipidone	Bu	Ac	Ac	Ac	Н	E. decipiens	98
270	isodecipinone	Bz	Н	Ac	Ac	Ac	E. decipiens	98
271	17-acetoxy-13-deacetylisodecipidone	Bu	Ac	Ac	Н	Ac	E. decipiens	100

Table 35. Myrsinanes-2

	760				
no.	name	R_1	R_2	plant	ref
272	3β , 7β , 15β -tri- <i>O</i> -acetyl- 5α - <i>O</i> -nicotinoyl- 13β , 14β -dihydroxy- 14-desoxo- 14α , 6α -epoxymethanomyrsinol	Ac	Nic	E. decipiens	101
273	decipinol ester A	Bu	Nic	E. decipiens	96
274	decipinone B	Ac	Bz	E. decipiens	102
275	decipinone C	Ac	Bu	E. decipiens	102
276	3β , 7β , 15β -tri-O-acetyl- 5α -O-benzoyl- 13β , 14β -dihydroxy-14- desoxo- 14α , 6α -epoxymethanomyrsinol	Bu	Bz	E. decipiens	101

Table 36. Myrsinanes-3

no.	name	R_1	\mathbb{R}_2	R_3	\mathbf{R}_4	plant	ref
277	euphorprolitherin C: 5α , 15β -di- <i>O</i> -acetyl- 7β , 14β -di- <i>O</i> -benzoyl-14-des- oxo- 3β - <i>O</i> -propanoylmyrsinol	Pr	Bz	Bz	Ac	E. prolifera	103
278	5α , 15β -di-O-acetyl- 7β , 14β -di-O-nicotinoyl-14-desoxo- 3β -O-propanoylmyrsinol	Pr	Nic	Nic	Ac	E. seguieriana	19
279	$3\beta.5\alpha, 15\beta$ -tri-O-acetyl-7 $\beta, 14\beta$ -di-O-nicotinoyl-14-desoxomyrsinol	Ac	Nic	Nic	Ac	E. seguieriana	19
280	3β , 5α , 15β -tri- <i>O</i> -acetyl- 7β - <i>O</i> -benzoyl- 14β - <i>O</i> -nicotinoyl-14-desoxomyrsi- nol	Ac	Bz	Nic	Ac	E. seguieriana	19
281	5α,15βdi-O-acetyl-7β-O-benzoyl-14β-O-nicotinoyl-14-desoxo-3β-O- propanovlmyrsinol	Pr	Bz	Nic	Ac	E. seguieriana	19
282	$5\alpha, 14\beta, 15\beta$ -tri-O-acetyl-7 β -O-benzoyl-14-desoxo-3 β -O-pro- panoylmyrsinol	Pr	Bz	Ac	Ac	E. seguieriana	19
283	$5\alpha, 14\beta, 15\beta$ -tri-O-acetyl-7 β -O-nicotinoyl-14-desoxo-3 β -O-pro- panovlmyrsinol	Pr	Nic	Ac	Ac	E. seguieriana	19
284	$5\alpha 14\beta$ -di- <i>O</i> -acetyl-15 β -hydroxy-7 β - <i>O</i> -nicotinoyl-14-desoxo-3 β - <i>O</i> -propanoylmyrsinol	Pr	Nic	Ac	Н	E. seguieriana	19

Table 37. Myrsinanes-4

no.	name	R_1	R_2	plant	ref
285	15β -O-acetyl- 3β -O-butanoyl- 7β -O-nicotinoyl- 5α -O-propanoylmyrsinol	Bu	Pr	E. myrsinites	104
286	15β -O-acetyl- 3β , 5α -di-O-butanoyl- 7β -O-nicotinoylmyrsinol	Pr	Pr	E. myrsinites	104
287	15β -O-acetyl- 7β -O-nicotinoyl- 3β , 5α -di-O-propanoylmyrsinol	Bu	Bu	E. myrsinites	104
288	15β -O-acetyl- 5α -O-butanoyl- 7β -O-nicotinoyl- 3β -O-propanoylmyrsinol	Pr	Bu	E. myrsinites	104

Table 38.Myrsinanes-5

MeBu

E. prolifera

Table 39. Myrsinanes-6

euphorprolitherin B

290

103

as *E. boetica*, *E. segetalis*, *E. altotibetic*, *E. aleppica*, *E. quinquecostata*, and *E. latifolia*.^{30,52,111,114,147,150}

2.6. Cerebrosides and Glycerols (Tables 68 and 69)

A complex mixture of four glucocerebrosides, **522** (n = 21), **523** (n = 1, 3), and **524**, was isolated from *E. peplis*.¹⁶³

	291-298	299					
no.	name	R_1	R_2	R_3	R_4	plant	ref
291	3β -O-benzoyl- 5α , 7β ,17-tri-O-acetyl- 15β -hydroxycheiradone	Bz	Ac	Ac	H	E. decipiens	101
292	3β , 5α ,17-tri-O-acetyl- 7β -O-benzoyl- 15β -hydroxycheiradone	Ac	Ac	Bz	H	E. decipiens	105
293	3β , 5α ,1 5β ,17-tetra-O-acetyl- 7β -O-benzoylcheiradone	Ac	Ac	Bz	Ac	E. decipiens	105
294	3β , 5α ,1 5β ,17-tetra-O-acetyl- 7β -O-nicotinoylcheiradone	Ac	Bz	Nic	Ac	E. decipiens	105
295	15β -O-acetylcheiradone	Ac	Bz	Ac	Ac	E. decipiens	96
296	cheiradone	Ac	Bz	Ac	H	E. cheiradenia	106
297	cheiradone A	Ac	Bz	H	H	E. cheiradenia	106
298	cheiradone B myrsinol analog with C_9-C_{10} lactone ring	H	Bz	Ac	H	E. cheiradenia	106
299		—	—	—	—	E. prolifera	107

Table 40. Cyclomyrsinanes

no.	name	R_1	R_2	R_3	\mathbb{R}_4	R_5	plant	ref
300	3β , 5α , 10β , 14β , 15β -penta-O-acetyl- 8β -O-(2-methylbutanoyl)cyclomyrsinol	Ac	Ac	MeB	uAc	Ac	E. teheranica	108
301	5α , 10β , 14β , 15β -tetra- <i>O</i> -acetyl- 8β - <i>O</i> -(2-methylbutanoyl)- 3β - <i>O</i> -nicotinoylcy- clomyrsinol	Nic	Ac	MeB	uAc	Ac	E. teheranica	108
302	3β , 10β , 15β -tri-O-acetyl- 8β -O-isobutyryl- 5α , 14β -O-dinicotinoylcyclomyrsinol	Ac	Nic	iBu	Nic	Ac	E. seguieriana	109
303	5α , 10β , 15β -tri-O-acetyl- 8β , 14β -O-dinicotinoyl- 3β -O-propanoylcyclomyrsinol	Pr	Ac	Nic	Nic	Ac	E. seguieriana	19
304	euphorprolitherin D: 5α , 10β , 14β -tri- <i>O</i> -acetyl- 8β - <i>O</i> -benzoyl- 3β - <i>O</i> -propanoylcy- clomyrsinol	Pr	Ac	Bz	Ac	Η	E. prolifera	103
305	sPr5	Pr	Ac	Bz	Ac	Ac	E. prolifera	110

Table 41. Premyrsinanes-1

no.	name	R_1	R_2	R_3	\mathbf{R}_4	R_5	R_6	plant	ref
306	eufoboetol	Н	Н	Н	Н	OH	Me	E. boetica	111
307	kandovanol ester A	Ac	Bz	Ac	Ac	Me	OH	E. decipiens	96
308	kandovanol ester B	Ac	Bu	Ac	Ac	Me	OH	E. decipiens	96
309	3β , 7β , 13β , 17 -tetraacetoxy- 5α -isobutyryloxypremyrsinol	Ac	iBu	Ac	Ac	Me	OAc	E. pithyusa	90
								subsp. <i>cupanii</i>	
310	7β , 13β , 17 -triacetoxy- 5α -isobutyryloxy- 3β -propanoyloxypremyrsinol	Pr	iBu	Ac	Ac	Me	OAc	E. pithyusa	90
								subsp. <i>cupanii</i>	
311	7β ,13-diacetoxy-15 α -isobutyryloxy-17-nicotinoyloxy- 3β -propanoyl-	Pr	iBu	Nic	Ac	Me	OAc	E. pithyusa	90
	oxypremyrsinol							subsp. <i>cupanii</i>	
312	7β , 13β -diacetoxy-17-isobutyryloxy-5-(2-methylbutanoyloxy)- 3β -pro-	Pr	MeBu	iBu	Ac	Me	OAc	E. pithyusa	90
	panoyloxypremyrsinol						~ .	subsp. <i>cupanii</i>	
313	7β , 13β -diacetoxy- 5α , 17 -diisobutyryloxy- 3β -propanoyloxypremyrsinol	Pr	1Bu	1Bu	Ac	Me	OAc	E. pithyusa	90
							~ .	subsp. <i>cupanii</i>	
314	β ,13 β -diacetoxy-5 α -isobutyryloxy-3 β ,17-dipropanoyloxypremyrsinol	Pr	1Bu	Pr	Ac	Me	OAc	E. pithyusa	90
		Б	D				<u></u>	subsp. <i>cupanu</i>	0.0
315	β ,	Pr	Bz	Ac	Ac	Me	OAc	E. pithyusa	90
216								subsp. <i>cupanu</i>	100
316	$/\alpha$ -O-acetyI-S β -O-benzoyI-13 β -hydroxy-3 β ,18-dinicotinoyloxypremyrsi- nol	_	-	_	_	_	_	E. seguieriana	109

karajinone B

318

These were the first examples of glycosphingolipids from the Euphorbia genus. Other cerebrosides (522-526) and a

Η

E. decipiens

112

sphingosine (527) have been isolated from several species. Cateni et al. isolated three new glycolipids (528, 530, and **531**) with anti-inflammatory activity from *E. cyparissias*.¹⁶⁷

2.7. Phenolics (Tables 70 and 71)

Several acetophenones and its glycoside were isolated from *E. portulacoides, E. quinquecostata, E. quinquecostata, E. fischeriana,* and *E. ebracteolata*.^{13,16,30,168} Unusual phenol dimers (541 and 542) were reported from E. ebracteolata.¹⁶⁸

2.8. Flavonoids (Table 72)

In 2004, a new flavonol glycoside, quercetin 3-O-6'-(3hydroxyl-3-methylglutaryl)- β -D-glucopyranoside (543), and four known flavonoids, kaempferol 3-O-2''-galloyl- β -Dglucopyranoside, kaempferol 3-O-rutinoside, quercetin 3-O- β -D-glucopyranoside, and rutin, were isolated from the aerial parts of *E. ebracteolata*.¹⁶⁹ Nishimura et al. reported the isolation of one new flavonoid galactoside, quercetin 3-O- $(2'',3''-digalloyl)-\beta$ -D-galactopyranoside (544), from *E. lunu*lata, along with four known ones, quercetin 3-O-(2"-galloyl)- β -D-galactopyranoside (545), hyperin, and quercetin.¹⁷⁰ Recently, Zhang et al. reported six known flavonoids such as licochalcone A, 4,2',4'-trihydroxychalcone, echinatia, licochalcone B, glabrone, and 5,7,4'-trihydroxyflavanone from E. helioscopia.12 These compounds were isolated from the species for the first time. In addition, the common flavonoids such as kaempferol, kaempferol 3-O-L-rhaside, kaempferol 3-O- β -D-glucopyranoside, quercetin, quercetin $3-O-\beta$ -D-glucopyranoside, and astragalin have been isolated from many plants of this species such as E. latifolia, E. altotibetic, and E. aleppica. 52,113,114,147

2.9. Miscellaneous Compounds (Table 73)

Lee et al. isolated a new ellagitannin, jolkinin (546), from the fresh whole plant of *E. jolkinii* in 2004.¹⁷¹ It has a unique hexacyclic structure attached to the 2,4-positions of 1-Ogalloyl-3,6-(R)-hexahydroxydiphenoyl- β -D-glucopyranose. 3,3',4'-

Table 43. Premyrsinanes-3

	16 3) 0 H 17 =	$ \begin{array}{c} $	19 18	
no.	name	R	plant	ref
324 325	lagaspholone A lagaspholone B	H OH	E. lagascae E. lagascae	115 115

1 OH

R.

Tri-O-methyl-4-O- $[\alpha$ -L-rhamnopyranosyl- $(1'' \rightarrow 6'')$ - β -D-glucopyranosyl]ellagic acid has been isolated from E. quinquecostata.³⁰ In 2002, Su et al. isolated a new dihydrobenzo[b]furan neolignan, (-)-trans-9-acetyl-4,9'-di-Omethyl-3'-de-O-methyldehydrodiconiferyl alcohol (547), from the stem wood of E. quinquecostata along with 3,4dimethoxycinnamaldehyde.³⁶

Coumarins in Euphorbia genus are not very rich. The main compounds are scopoletin (548),⁵² 7,7'-dihydroxy-6,8'-bicoumarin (bicoumol, **549**),³⁶ 6,7,8-trimethoxycoumarin (550),³⁰ and 6-hydroxy-7-methoxycoumarin (isoscopoletin, 551).³⁶ Two alkaloids, uracil and uridine, were isolated from E. altotibetic in 2003.⁵² In 1999, Che et al. reported the isolation of physcion from E. fischeriana.¹³ Gallic acid, 3,3'di-O-methylellagic acid, and 3,4,3'-tri-O-methylellagic acid 4'-O- β -D-glucopyranoside were isolated from *E. fischeriana*, E. sessiliflora, and E. lunulata.^{13,15,75} Octacosyl ferulate (552 and 553),¹⁷² 1-glycerin hexadecanoate, 1-octacosanol, 9- cistricosene, 4-hydroxybenzoic acid, and its methyl ether were found to exist in E. fischeriana, E. humifusa, E. latifolia, and *E. aleppica*.^{84,113,145,147,148}

	ACQ R40 H/m O H/m O R10 ACO R10 R2 R3 ACD R2 R3 ACD R10 R2 R3 ACD R10 R2 R3	AcO AcO H/, O AcO AcO AcO					
	313-322	JZ					
no.	name	R_1	R_2	R_3	\mathbb{R}_4	plant	ref
319	aleppicatine A	Tigl	Н	OAc	Ac	E. aleppica	113
320	aleppicatine B	Tigl	Н	OAc	Tigl	E. aleppica	113
321	euphoreppine A	Ac	OTigl	Н	Ac	E. aleppica	114
322	euphoreppine B	Ac	OTigl	Н	Tigl	E. aleppica	114
323	3β , 5α , 14β , 15β , 17 -penta-O-acetyl-7-O-nicotinoyleuphoppin	—	-	-	-	E. decipiens	96

Table 46. Tiglianes-1

no.	name	R_1	R_2	R ₃	plant	ref
329	13α -isobutyryloxy-4-deoxy- 12β -tigloyloxyphorbol	OH	Н	Tigl	E. semiperfoliata	23
330	12β , 13α -diisobutyryloxy-4, 20-dideoxyphorbol	Н	Н	iBu	E. obtusifolia	50
331	12β , 13α -diisobutyryloxy-4-deoxyphorbol	OH	Н	iBu	E. obtusifolia	50
332	17-acetoxy-12,13α-diisobutyryloxy-4-deoxyphorbol	OH	OAc	iBu	E. obtusifolia	50
333	17 -acetoxy- 12β , 13α -diisobutyryloxy-4, 20-dideoxyphorbol	Н	OAc	iBu	E. obtusifolia	50
334	20-acetoxy- 12β , 13α -diisobutyryloxy-4-deoxyphorbol	OAc	Н	iBu	E. obtusifolia	50
335	12β -benzoyloxy- 13α -isobutyryloxy-4-deoxyphorbol	OH	Η	Bz	E. semiperfoliata	23
336	12β , 13α -diisobutyryloxy-4-deoxy-4- <i>epi</i> -phorbol (4- <i>epi</i> - 331)	—	_	—	E. obtusifolia	50
337	13α-hexadecanoyl-4,12-dideoxy-4-epi-phorbol	-	_	-	E. guyoniana	120

Table 47. Tiglianes-2

no.	name	R_1	R_2	plant	ref
338	20-acetoxy-13-isobutyryloxy-12-deoxyphorbol	Ac	iBu	E. resinifera	11
339	13-hexadecanoyloxy-12-deoxyphorbol	Н	CO(CH ₂) ₁₄ CH ₃	E. fischeriana	8
340	prostratin: 13-acetoxy-12-deoxyphorbol	Н	Ac	E. fischeriana	8
				E. cornigera	121
341	20-acetoxy-13-(9Z-octadecanoyloxy)-12-deoxyphorbol	Ac	А	E. fischeriana	21
342	20-acetoxy13-angeloyloxy-12-deoxyphorbol	Ac	Ang	E. poisonii	122
			-	E. resinifera	11
343	20-acetoxy-12-deoxy13-phenylacetoxyphorbol	Ac	PhAc	E. poisonii	116
344	20-hydroxy-13-(E-9,10-methanoundecanoyloxy)-12-deoxyphorbol	Н	В	E. poisonii	123
345	13-angeloyloxy-20-hydroxy-12-deoxyphorbol	Н	Ang	E. poisonii	122
346	13-acetoxy-20-benzoyloxy-12-deoxyphorbol	Ac	Bz	E. cornigera	124
347	13-acetoxy-20-p-methoxybenzoyloxy-12-deoxyphorbol	Ac	p-MeOC ₆ H ₄ CO	E. cornigera	124
348	20-angeloyloxy-13-decanoyloxy-12-deoxyphorbol	CO(CH ₂) ₈ CH ₃	Ang	E. cornigera	124
349	13-decanoyloxy-20-tigloyloxy-12-deoxyphorbol	$CO(CH_2)_8CH_3$	Tigl	E. cornigera	124
350	13-acetoxy-20-decanoyloxy-12-deoxyphorbol	Ac	$CO(CH_2)_8CH_3$	E. cornigera	124
351	13-butanoyloxy-20-decanoyloxy-12-deoxyphorbol	Bu	$CO(CH_2)_8CH_3$	E. cornigera	124
352	20-decanoyloxy-13-hexanoyloxy-12-deoxyphorbol	$CO(CH_2)_4CH_3$	$CO(CH_2)_8CH_3$	E. cornigera	124
353	20-decanoyloxy-13-octanoyloxy-12-deoxyphorbol	$CO(CH_2)_6CH_3$	$CO(CH_2)_8CH_3$	E. cornigera	124
354	20-decanoyloxy-13-dodecanoyloxy-12-deoxyphorbol	$CO(CH_2)_{10}CH_3$	CO(CH ₂) ₈ CH ₃	E. cornigera	124

Table 48. Tiglianes-3

no.	name	R	plant	ref
355	13-(2,3-dimethylbutanoyloxy)-4,12,20-trideoxyphorbol	Н	E. pithyusa subsp. cupanii	90
356	13-(2,3-dimethylbutanoyloxy)-4,12-dideoxyphorbol	OH	E. pithyusa subsp. cupanii	90
357	20-acetoxy-13-(2,3-dimethylbutanoyloxy)-4,12-dideoxyphorbol	OAc	E. pithyusa subsp. cupanii	90
358	13-acetoxy-12-deoxyphorbaldehyde	Ac	E. fischeriana	21
359	13-hexadecacetoxy-12-deoxyphorbaldehyde	CO(CH ₂) ₁₄ CH ₃	E. fischeriana	21

Table 49. Ingenanes-1

				~		
no.	name	R_1	R_2	R ₃	plant	ref
360	20-O-(2' E,4' E-decadienoyl)ingenol	Н	Н	OB	E. kansui	65
361	20-O-(2' E,4' Z-decadienoyl)ingenol	Н	Н	OA	E. kansui	65
362	3β -O-(2' E,4' Z-decadienoyl)ingenol	А	Н	OH	E. kansui	65
363	3β -O-(2' E,4' E-decadienoyl)ingenol	В	Н	OH	E. kansui	65
364	5β -O-acetyl- 3β -O-(2' E,4' Z-decadienoyl)ingenol	А	Ac	OH	E. kansui	65
365	20-O-acetyl-3 β -O-(2' E,4' Z-decadienoyl)ingenol	А	Н	OAc	E. kansui	65
366	20-O-acetyl-3 β -O-(2' E,4' E-decadienoyl)ingenol	В	Η	OAc	E. kansui	65
367	20-O-decanoylingenol	Н	Н	OCO(CH ₂) ₈ CH ₃	E. kansui	65
368	5β -O-(2' E,4' E-decadienoyl)ingenol	Н	В	OH	E. kansui	65
369	20-O-myristoylingenol	Н	Η	$OCO (CH_2)_{12}CH_3$	E. wallichii	125
370	3β -O-myristoylingenol	$CO(CH_2)_{12}CH_3$	Η	OH	E. wallichii	125
371	3β -O-angeloylingenol	Ang	Η	OH	E. peplus	44
372	20-O-acetyl-3 β -O-angeloylingenol	Ang	Η	OAc	E. peplus	44
373	5β ,20-di- <i>O</i> -acetyl- 3β - <i>O</i> -angeloylingenol	Ang	Ac	OAc	E. acrurensis	77
					E. canariensis	7
374	3β -O-angeloyl-20-deoxyingenol	Ang	Н	Н	E. paralias	59
375	kansuiphorin C	Ac	Bz	Н	E. kansui	126
376	Euphorbia factor L ₅ : 20- <i>O</i> -hexadecanoylingenol	Н	Н	OCOC ₁₅ H ₃₁	E. quinquecostata	118
					E. lathyris	127
377	ingenol	Н	Н	OH	E. lathyris	88
378	Euphorbia factor L_4	$COC_{15}H_{31}$	Н	OH	E. lathyris	88
379	Euphorbia factor L_6	$COC_{14}H_{17}$	Н	OH	E. lathyris	88
380	ingenol 3β -(2,6-dimethylnonanoate)	C	Н	OH	E. resinifera	11
381	milliamine F isomer	D	H	OPr	E. leuconeura	128
382	3β -O-(2' E,4' Z-decadienoyl)-20-deoxyingenol	A	H	H	E. kansui	62
383	3β -O-(2' E,4' E-decadienoyl)-20-deoxyingenol	В	H	H	E. kansui	62
384	20- <i>O</i> -acetylingenol	Н	Н	OAc	E. segetalis	38
205				TT	E. kansui	129
385	20-deoxyingenol	Н	Н	Н	E. segetalis	38
					E. kansui	129

Table 50. Ingenanes-2

		но	$\subseteq R_2$			
no.	name	R_1	R ₂	R ₃	plant	ref
386	20-acetoxy-3 β -O-angeloyl-17-angeloyloxyingenol	Ang	OAc	Ang	E. segetalis	38
387	17-acetoxy- 3β -O-angeloyl-20-deoxyingenol	Ang	Н	Ac	E. acrurensis	77
388	3β -O-angeloyl-17-angeloyloxy-20-deoxyingenol	Ang	Н	Ang	E. paralias	59
					E. segetalis	38
389	3β -O-benzoyl-17-benzoyloxy-20-deoxyingenol	Bz	Н	Bz	E. portulacoides	16
390	20-O-hexadecanoyl-17-hydroxyingenol	Η	OCO(CH ₂) ₁₄ CH ₃	Н	E. quinquecostata	30
391	17-(2 Z,4 E,6 Z-2,4,6-tridecanoyloxy)ingenol	Η	OH	2,4,6-decatrienoyl	E. cauducifolia	130
392	3β -O-angeloyl-17-(2 Z,4 E,6 Z-tridecanoyloxy)ingenol	Ang	OH	2,4,6-decatrienoyl	E. cauducifolia	130
393	3β -O-acetyl-20-O-angeloyl-17-hydroxyingenol	Ac	OAng	Н	E. cauducifolia	130
394	17 -acetoxy- 3β -O-angeloylingenol	Ang	OH	Ac	E. cauducifolia	130
395	20-acetoxy- 3β -O-angeloyl-17-hydroxyingenol	Ang	OAc	Н	E. cauducifolia	130
		e			E. hermetiana	131
396	3β -O-angeloyl-17-benzoyloxyingenol	Ang	OH	Bz	E. cauducifolia	130
		e			E. canariensis	132
397	20-acetoxy- 3β -O-angeloyl-17-benzoyloxyingenol	Ang	OAc	Bz	E. cauducifolia	130
	, , , , , , , , , , , , , , , , , , , ,	U			E. canariensis	132
398	3β -O-angeloyl-17-benzoyloxy-20-deoxyingenol	Ang	Н	Bz	E. esula	133

3. Hypothetical Biogenetic Route of the Rearranged Diterpenoids

Most polycyclic and macrocyclic diterpenoids are biosynthesized from geranylgeranyl diphosphate (Scheme 1).²²

3.1. Biosynthesis from Jatrophanes

Bicyclic jatrophanes are converted to tetracyclic paralianes and pepluanes as shown in Scheme 2.^{44,139} Successive transannular reaction of a jatrophane **554** would

Table 51. Ingenanes-3

no.	name	R_1	R ₂	R ₃	plant	ref
399	20-O-acetyl- 13β -O-(2,3-dimethylbutanoyl)- 13α -O-dodecanoylingenol	А	CO(CH ₂) ₁₀ CH ₃	OAc	E. kansui	62
400	3β -O-(2,3-dimethylbutanoyl)-13 α -O-dodecanoyl-20-deoxyingenol	А	$CO(CH_2)_{10}CH_3$	Н	E. kansui	62
401	$20-O-(2,3-dimethylbutanoyl)-13\alpha-O-dodecanoylingenol$	Η	$CO(CH_2)_{10}CH_3$	OA	E. kansui	62
					E. cyparissias	134
402	3β -O-(2,3-dimethylbutanoyl)-13 α -O-dodecanoylingenol	А	$CO(CH_2)_{10}CH_3$	OH	E. kansui	62
					E. cyparissias	49
403	3β -O-benzoyl-13 α -O-dodecanoylingenol	Bz	$CO(CH_2)_{10}CH_3$	OH	E. kansui	135
404	$20-O$ -benzoyl- 13α -O-dodecanoylingenol	Η	$CO(CH_2)_{10}CH_3$	OBz	E. kansui	135
405	3β -O-(2,3-dimethylbutanoyl)- 13α -O-octanoylingenol	А	CO(CH ₂) ₆ CH ₃	OH	E. esula	133
406	3β -O-benzoyl-13 α -O-octanoylingenol	Bz	CO(CH ₂) ₆ CH ₃	OH	E. esula	133

Table 52. Ingenanes-4

no.	name	\mathbf{R}_1	R ₂	R_3	plant	ref
407	13α -acetoxy- 3β -O-benzoyl-17-benzoyloxyingenol	Bz	Ac	Н	E. segetalis	38
408	13α -acetoxy- 3β -O-angeloyl-17-benzoyloxyingenol	Ang	Ac	Н	E. segetalis	38
409	17-benzoyloxy- 3β , 13α -bis-O-(2, 3-dimethylbutanoyloxy)ingenol	А	А	Н	E. esula	133
410	17-benzoyloxy- 3β , 13α -bis- O -(2, 3-dimethylbutanoyloxy)-20-hydroxyingenol	А	А	OH	E. esula	133
411	17-benzoyloxy-13 α ,20-bis-O-(2,3-dimethylbutanoyloxy)-3 β -hydroxyingenol	Η	А	OA	E. esula	133
412	17-benzoyloxy-17,20-dihydroxy-13α-octanoyloxyingenol	Η	$CO(CH_2)_6CH_3$	OH	E. esula	133
413	3β ,17-dibenzoyloxy-20-hydroxy-13 α -octanoyloxyingenol	Bz	CO(CH ₂) ₆ CH ₃	OH	E. esula	133
414	17,20-dibenzoyloxy-3 β -hydroxy-13 α -octanoyloxyingenol	Η	CO(CH ₂) ₆ CH ₃	OBz	E. esula	133
415	3β -O-benzoyl-17-benzoyloxy-13 α -octanoyloxyingenol	Bz	CO(CH ₂) ₆ CH ₃	Н	E. esula	133
416	17-benzoyloxy-3β- O -(2,3-dimethylbutanoyloxy)-13α-octanoyloxy-20-hy- droxyingenol	А	CO(CH ₂) ₆ CH ₃	OH	E. esula	133
417	17-benzoyloxy-20-(2,3-dimethylbutanoyloxy)-13 α -octanoyloxy-3 β -hydroxyingenol	Н	CO(CH ₂) ₆ CH ₃	OA	E. esula	133
418	3β ,13 α ,17-tri-O-benzoyloxy-20-hydroxyingenol	Bz	Bz	OH	E. esula	133
419	13α , 17-dibenzoyloxy- 3β -O-(2, 3-dimethylbutanoyloxy)-20-hydroxyingenol	А	Bz	OH	E. esula	133
420	3β ,17-dibenzoyloxy- 3α - O -(2,3-dimethylbutanoyloxy)-20-hydroxyingenol	Bz	А	OH	E. esula	133
421	13α -acetoxy-17-benzoyloxy- 3β -O-(2,3-dimethylbutanoyloxy)ingenol	А	Bz	Η	E. esula	133

afford a 5/6/5/5-ring system of paraliane 555. Oxidation followed by ring expansion and acetylation leads to a pepluane 556. $1(15\rightarrow14)$ *Abeo*jatrophane skeleton (212–214) could be derived from 557 by pinacol rearrangement (Scheme 3).⁴³ This mechanism can be applied to the biosynthesis of lathyranone A (261).⁹⁵ The C2-unit of bishomojatrophanes (192–208) is to be from acetyl or malonyl thiol ester moieties (Scheme 4).⁷⁵

3.2. Biosynthesis from Lathyranes

Three types of myrsinane diterpenoids and euphoractins would be formed from epoxy lathyranes (**558** or **559**) as shown in Scheme 5.¹⁹ The rare 5/6/7/3-ring system of lagaspholone A (**324**), a jatropholane-type skeleton, is from lathyrane **560** (Scheme 6).¹¹⁵ Lathyranoic acid (**260**) would be an oxidative degradation product of Euphorbia factor L_{11} (**252**) (Scheme 7).⁹¹

4. Biological Activity

4.1. Antiproliferative Activity

In 1997, Xu et al. reported that yuexiandajisu B (57) from E. ebracteolata inhibited proliferation of B lymphocytes in vitro preliminary bioassays.⁴² Valente et al. reported the in vitro effect of pubescenol (147), helioscopinolide A (20), helioscopinolide B (21), and pubescene D (170) on the human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (nonsmall cell lung cancer), and SF-268 (CNS cancer). All four of the compounds were shown to be moderate inhibitors of the growth of these cell lines.²⁶ Putranjivain A, a tannin extracted from the whole plant of E. jolkini Bioss, was reported to inhibit the proliferation of MCF-7 by blocking cell cycle progression in the G0/G1 phase and inducing apoptosis.^{173*} In 2005, Nishimura et al. reported the proliferation activity of acetone extract of the whole plants of *E. lunulata* for insulin- and interleukin-10 (IL-10)-dependent cell lines.¹⁷⁰ Fractionation of the active extract led to the isolation of quercetin 3-O-(2",3"-digalloyl)-

Table 53. Segetanes-1

no.	name	R ₁	R ₂	R ₃	plant	ref
422 423	segetene B segetene A	OAc H	H OAc	α -OAc β -OAc	E. paralias E. paralias	57 57
424	(2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,6 <i>R</i> *,8 <i>R</i> *,12 <i>S</i> *,13 <i>R</i> *,14 <i>R</i> *,15 <i>R</i> *)-6,14,17-triac- etoxy-5-(2-acetoxyacetoxy)-3-benzoyloxy-15-hydroxysegetan-9-one	COCH ₂ OAc	Ac	H	E. segetalis	38
425	(2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,6 <i>R</i> *,8 <i>R</i> *,12 <i>S</i> *,13 <i>R</i> *,14 <i>R</i> *,15 <i>R</i> *)-6,11,14,17-tet-	COCH ₂ OAc	Ac	OAc	E. paralias E. segetalis	59 38
426	(2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,6 <i>R</i> *,8 <i>R</i> *,12 <i>S</i> *,13 <i>R</i> *,14 <i>R</i> *,15 <i>R</i> *)-6,14,17-triac-	COCH ₂ OH	Ac	Н	E. paralias E. segetalis	59 38
427	etoxy-3-benzoyloxy-15-hydroxy-5-(2-hydroxyacetoxy)segetan-9-one euphoportlandol B: 5α .11 α .14 α .17-tetraacetoxy-3 β -benzoyloxy-6 β .15 β -	Ac	Н	OAc	E. paralias E. portlandica	57 136
428	dihydroxysegetan-9-one (2 <i>S</i> *,3 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *,6 <i>R</i> *,8 <i>R</i> *,11 <i>S</i> *,12 <i>S</i> *,13 <i>R</i> *,14 <i>R</i> *,15 <i>R</i> *)-	Ac	Ac	OAc	E. paralias	59
429 430	5,6,11,14,17-pentaacetoxy-3-benzoyloxy-15-hydroxysegetan-9-one paralinone B paralinone A	COCH ₂ OAc COCH ₂ OAc	Ac Ac	OAc H	E. paralias E. paralias	137 137
431	segetanin A	Ac	Ac	OH	E. paralias	138

Table 54. Segetanes-2 and Presegetanes

no.	name	plant	ref
432	euphoportlandol A: 5α , 11α , 14α , 17 -tetraacetoxy- 3β -benzoyloxy- 6β , 15β -dihydroxy-	E. port-	136
	seget-8(12)-en-9-one	landica	
433	segetanin B	E. paralias	138
434	(2 S*,3 S*,4 R*,5 R*,6 S*,8 R*,11 S*,12 S*,13 R*,14 R*,15 R*)-6,11,14-triacetoxy-3-	E. paralias	59
	benzoyloxy-15-hydroxy-5-(3-oxobutanoyl)-9-segetanone		
435	(2 S*,3 S*,4 R*,5 R*,6 R*,7 S*,8 R*,12 R*,13 S*,14 R*,15 R*)-5-angeloyloxy-3-ben-	E. segetalis	38
	zoyloxy-6,14:8,14-diepoxy-7,13,15,17-tetrahydroxy-15-epi-presegetan-9-one		
436	presegetanin	E. paralias	138
436	zoyloxy-6,14:8,14-diepoxy-7,13,15,17-tetrahydroxy-15- <i>epi</i> -presegetan-9-one presegetanin	E. paralias	138

Table 55. Paralianes

no.	name	R_1	R_2	R_3	R_4	plant	ref
437	(1 R*,2 R*,3 S*,4 R*,5 R*,6 R*,8 S*,12 S*,13 S*,14 R*,15 R*)-	OAc	Н	Н	OAc	E. segetalis	38
	1,5,8,14-tetraacetoxy-3-benzyloxy-15-hydroxyparalian-9-one						
						E. paralias	57
438	(1 R*,2 R*,3 S*,4 R*,5 R*,6 R*,8 R*,12 R*,13 S*,14 R*,15 R*)-	OAc	Н	Н	Н	E. segetalis	38
	1,5,14-triacetoxy-3-benzoyloxy-15-hydroxyparalian-9-one					0	
439	(2 R*,3 R*,4 S*,5 R*,6 R*,8 R*,12 R*,13 S*,14 R*,15 R*)-2,5,14-	Н	OAc	Н	Н	E. segetalis	38
	triacetoxy-3-benzoyloxy-15-hydroxyparalian-9-one					0	
440	$(1 R^* 2 R^* 3 S^* 4 R^* 5 R^* 6 R^* 8 R^* 12 R^* 13 S^* 14 R^* 15 R^*)$ -	OAc	н	OAc	н	E segetalis	38
	1 5 14 17-tetraacetoxy-3-benzovloxy-15-bydroxyparalian-9-one	0110		0110		21 50801000	20
441	$(2 \ S^* \ 3 \ S^* \ 4 \ R^* \ 5 \ R^* \ 6 \ R^* \ 8 \ S^* \ 12 \ S^* \ 13 \ S^* \ 14 \ R^* \ 15 \ R^*) - 5 \ 8 \ 14$	Н	Н	Н	OAc	E paralias	59
	triacetoxy-3-benzovloxy-15-bydroxyparalian-9-one				0/10	E. paranas	57
	thatetoxy-5-benzoyloxy-15-nytroxyparanan-9-one						

Table 57. Euphoractines-1

no.	name	R_1	R ₂	R ₃	R_4	plant	ref
446	3β -acetoxy- 11β -methoxyeuphoractine D	α-Me	Bz	CH ₃	Ac	E. villosa	87
447	3β -acetoxy euphoractine D	α-Me	Bz	Н	Ac	E. villosa	87
448	euphoractine A	β -Me	Cinn	Н	Н	E. micractina	141
449	euphoractine C	β -Me	Bz	Н	Н	E. micractina	142
450	euphoractine D	α-Me	Bz	Н	Н	E. micractina	142

Table 58. Euphoractines-2

 β -D-galactopyranoside (544), quercetin 3-O-(2"-galloyl)- β -D-galactopyranoside (545), quercetin, and gallic acid. Compounds 544 and 545 showed proliferation activity for BAF/ InsR (insulin-dependent cell line), whereas quercetin and gallic acid showed stronger proliferation activity for BAF/ IL10R than compounds 544 and 545.¹⁷⁰

4.2. Cytotoxicity

Lathyrane diterpenoids 228, 229, and 234, isolated from E. nivulia, showed significant cytotoxic activity against Colo 205, MT2, and CEM cell lines. The LD₅₀ values are almost the same in the three cell lines for the three compounds.⁸⁴ 17-Acetoxyjolkinolide B (13) and 13-hexadecanoyloxy-12deoxyphorbol (339), obtained from the dried roots of Euphorbia fischeriana, exhibited potent cytotoxic activity to Ramos B cells with IC₅₀ values of 0.023 and 0.0051 μ g/ mL, respectively.²¹ Daphnane diterpenoids 326, 327, and tigliane diterpenoids 342-345, isolated from the bioactivityguided fractionation of the latex of *E. poisonii*, showed strong cytotoxic selectivity for the human kidney carcinoma (A-498) cell line with potencies exceeding that of adriamycin by 10 000 times.¹²³ Compound **235**, also from *E. poisonii*,⁸⁵ modestly cytotoxic against A-549, MCF-7, HT, A-498, PC-3, and PACA-2, exhibited nonselective ED₅₀ values ranging from 2 to 4 μ g/mL, whereas 237 was weakly but selectively active at ED₅₀ 15 μ g/mL against the prostate adrenocarcinoma (PC-3).⁸⁵

4.3. Effects on the Cell Division

Ingenane-type diterpenoids **360–368**, **382**, **383**, **399–404**, and euphane triterpenoids **454–457**, all isolated from *E. kansui*, ^{62,65,135,143} showed significant effects on the cell diversion of *Xenopus laevis* cells at the blastular stage. **360–368**, **382**, and **383** arrested cleavage significantly (0.5 μ g/mL of each compound resulted in >75% and 60% cleavage arrest, respectively). **402**, **403**, and **454–457** showed some activity (10 μ g/mL of each compound resulted in >60% and >50% cleavage arrest, respectively).

4.4. DNA-Damaging Activity

In a mutant yeast bioassay, compound **293**, isolated from *E. decipiens*, showed a positive response to DNA-damaging activity with IC₁₂ values of 750 μ g/mL against RS322Y (rad 52) and 1090 μ g/mL against wild-type LF 15 (Rad+).¹⁰⁵ Camptothecin was used as the standard drug, with IC₁₂ values of 12 μ g/mL for the mutant strain (rad 52) and 75 μ g/mL for the wild type.

4.5. Modulatority of Multidrug Resistance

In a rhodamine 123 exclusion test using L5178 mouse lymphoma cells, euphosalicin (216) was found to be more active than verapamil in reversing multidrug resistance in mouse lymphoma cells.⁶³ The jatrophane diterpenoids 92, 112, and 151, isolated from *E. mongolica*, also demonstrated a concentration-dependent effect in inhibiting the efflux pump activity of the tumor cells in the range 11.2–112 μ M.⁴⁹ Jatrophane diterpenoids 61, 64, and 119 (*E. peplus*), as well as two segetane diterpenoids, euphoportlandols B (427) and A (432) (*E. portlandica*), were found to be inhibitors of P-glycoprotein in the same test.^{66,136,115} The

459

		HO HO R HO HO R HO HO R HO HO R HO R HO	HO HO 464	
no.	name	R	plant	ref
454	kansenone	_	E. kansui	143
455	kansenonol	H_2	E. kansui	143
456	11-oxo-kansenonol	0	E. kansui	143
457	kansenol		E. kansui	143
458	euphol		E. antiquorum	144
			E. aleppica	114
			E. kansui	143
459	antiquol C: eupha-7,9(11),24-trien-3 β -ol		E. antiquorum	144
460	antiquol B: $19(10 \rightarrow 9)abeo-8\alpha(H),9\beta(H),10\alpha$		E. antiquorum	144
	(H)-eupha-5,24-dien- 3β -ol		-	
461	euphorbol: 24-methylenetirucall-8-en-3 β -ol		E. antiquorum	144
462	<i>epi</i> -kansenone	0	E. kansui	143
463	lanosterol	H_2	E. peplus	145
464	24-methylenelanosterol		E. peplus	145

Table 60. 6/6/6/5-Ring Triterpenoids-1

macrocyclic lathyrane polyester Euphorbia factor L_{10} (253) showed powerful inhibition of the transport activity of P-glycoprotein in the experiment using one million K562/ R7 human leukemic cells expressing high levels of P-glycoprotein.⁹²

Corea et al. studied on the structure—activity relationships of jatrophane diterpenoids as modulators of multidrug resistance. In 2003, they isolated a series of 10 closely related jatrophanes **102** and euphodendroidins A-I (**103-111**) from the Mediterranean spurge *E. dendroides* L., which served as a base for the establishment of structure—activity relationships within this class of P-glycoprotein inhibitors.⁵¹ The efficiency of euphodendroidins to inhibit P-glycoproteinmediated daunomycin efflux was investigated by monitoring the intracellular accumulation of this drug. The results demonstrated the critical role of a free hydroxy at C-3, lacking of oxygenation at C-2 and the differential effect of substituent at C-5. Hydroxylation or acyloxylation at this C-2 was detrimental for the activity. The nicotinoyl derivative euphodendroidin C (105) was 2-fold less active compared to its 2-methylbutanoyl and isobutyryl analogs. The most powerful compound of the series, euphodendroidin D (106), outperformed cyclosporin by a factor of 2 to inhibit Pgpmediated daunomycin transport. They also got 12 compounds, terracinolides B, C, H, J, K, L, 13a-OH terracinolides B, F, G, abeodendroidin F, and epi-abeodendroidin F (193, 194, 199–205, 213, and 214) from *E. dendroides* L.⁷⁴ All of the compounds were tested as inhibitors of the drugefflux activity of P-glycoprotein from cancer cells. The main information was that the revertant activity of terracinolides and abeojatrophanes was strongly affected by the presence of a free hydroxy group, with the following ranking of position: 3 < 15 < 13 < 2. In addition, substitution at position 6 affected the inhibitory ability in a way that dramatically depends on the location of the free hydroxy group. These observations suggest that jatrophanes and modified jatrophanes share a common gross pharmacophore, which is dramatically affected by changes of the oxygenation pattern.

In 2004, Corea et al. went on researching the same structure–activity relationships.⁴⁵ The main object was to reveal the importance of substitutions on the medium-sized

No.	name	plant	ref
469	lupenone	E. segetalis	150
	-	E. stygiana	146
470	3β-hydroxy-30-nor-lupan-20-one	E. chamaesyce	149
471	lup-20(30)-ene-3 β ,29-diol	E. chamaesyce	151
472	D-friedomadeir-14-en-3-one	E. mellifera	152
		E. stygiana	146
473	D-friedomadeir-14-en-3 β -yl acetate	E. stygiana	146
474	D:C-friedomadeir-7-en-3-one	E. mellifera	152
		E. stygiana	146
475	D:C-friedomadeir-7-en- 3β -yl acetate	E. stygiana	146

Table 62. 6/6/6/6-Ring Triterpenoids

ring (carbons 8, 9, 14, and 15). Through the insight of seven jatrophane diterpenoids, pepluanins A-E (**66–68**, **86**, and **87**), **11**, and **65**, isolated from *E. peplus* L., they found that the activity was collapsed by the presence of C-8 hydroxy, whereas it increased with C-14 carbonyl, C-9 acetoxy, and C-15 hydroxy groups. Pepluanin A (**66**) showed a very high activity for a jatrophane diterpenoid, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport.

4.6. Tumor Promoting Activity

Diterpene esters of the phorbol and ingenol types are known to be highly active tumor promoting agents that typically occur in members of the Euphorbiaceae.¹²⁸Latex as well as total leaf extracts of *E. leuconeura* exhibited Epstein–Barr-virus (EBV) inducing activity comparable to TPA (12-*O*-tetradecanoylphorbol acetate), a well-known tumor promoter. The activity of individual fractions correlated with their ingenol ester content.¹²⁸Compounds **391–397**, obtained from the latex of *E. cauducifolia*, were evaluated for cocarcinogenic and tumor-promoting activity on the back skin of NMRI mice. After 24 weeks, an average tumor rate of 7% and an average tumor yield of 0.07 tumors/mouse were noticed. After 36 weeks, an average tumor rate of 36% was observed and the average tumor yield was 0.45 tumors/mouse.¹³⁰

4.7. Pro-Inflammatory Activity

In 1999, Hohmann et al. investigated the irritant activities of some jatrophane diterpenes isolated from *E. peplus*. Only compound **77** was found to exert a weak pro-inflammatory activity on mouse ear of $ID_{50}^4 = ID_{50}^{24} = 29 \,\mu g/ear$ (the redness of the mouse ear was estimated 4 and 24 h after the application of solutions in Me₂CO). These data indicated that this type of diterpene does not play a significant role in the skin irritant activity of *Euphorbia* species.⁵⁵

4.8. Inhibition of Allergic Reactions

The water soluble fraction of *E. royleana* latex, showed dose-dependent anti-inflammatory and antiarthritic effects in different acute and chronic test models in rats and mice. It reduced the exudate volume and the migration of leukocytes and showed poor inhibitory effect on the granuloma formation induced by cotton pellets, while it had a low ulcerogenic score. The oral LD₅₀ was more than 1500 mg/kg in both of rats and mice.¹⁷⁴ Oral administration of petroleum ether extract of the aerial parts of *E. splendens* caused significant inhibition of edema and produced inhibition of leucocyte migration and exudate volume in the affected tissues. The

Table 63. Cycloartanes-1

no.	name	R	plant	ref
485	cycloart-25-ene-3 β ,24-diol	A	E. sessiliflora	15
			E. myrsinites	104
			E. portlandica	136
			E. aleppica	113
			E. altotibetic	52
			E.humifusa	148
486	cycloart-23Z-ene-3 β ,25-diol	В	E. sessiliflora	15
			E. portlandica	136
			E.humifusa	148
			E. chamaesyce	153
487	cycloartane- 3β ,26-diol	С	E. portlandica	136
488	cycloart-23 <i>E</i> -ene-3 β ,25-diol	D	E.humifusa	148
			E. myrsinites	104
			E. altotibetic	52
489	25-methoxycycloart-23 <i>E</i> -en-3 β -ol	Е	E. sessiliflora	15
490	cycloartane- 3β ,24,25-triol	F	E. sessiliflora	15
			E. portlandica	136
491	24-methylenecycloartan-3 β -ol	G	E. myrsinites	104
			E. aleppica	113
			E. portlandica	136
			E. segetalis	150
			E. peplus	148
			E. pubescens	26
			E. ebracteolata	154
492	cyclolaudanol	Н	E. myrsinites	104
			E. aleppica	113
493	3β -hydroxy-cycloart-25-en-24-one	Ι	E. myrsinites	104
			E. portlandica	136
			E. aleppica	113
494	cycloartenol	J	E. peplus	145
			E. neriifolia	156
			E. segetalis	150
495	cycloart-25-en-3 <i>β</i> -ol	Κ	E. nivulia	80
496	27 -nor- 3β -hydroxycycloartan- 25 -one	L	E. portlandica	136
497	$(24E)$ -3 β -hydroxycycloart-24-en-26-al	Μ	E. portlandica	136
498	(22E)-25,26,27-trinor-3β-hydroxycycloart-22-en-24-al	Ν	E. portlandica	136
499	25,26,27-trinor-3β-hydroxycycloartan-24-al	0	E. portlandica	136
500	24-hydroperoxycycloart-25-en-3β-ol	Р	E. portlandica	136
			*	

oral LD₅₀ in both rats and mice was approximately 1250 mg/kg.¹⁷⁵ A 95% ethanol extract from whole aerial parts of *E. hirta* (EH A001) showed antihistaminic, anti-inflammatory and immunosuppressive properties in various animal mod-

els.¹⁷⁶ *In vivo* tests, pepluanone (**444**), isolated from *E. peplus*, significantly reduced carrageenin-induced edema by 40% and 60%.¹⁴⁰ The lathyrane diterpenoid **229** showed significant PGE₂ inhibition using *in vitro* assay method employing Enzyme Immunoassay Kits. The IC₅₀ value for compound **229** was found to be 0.003 μ M compared to that of known PGE₂ inhibitor celecoxib (0.050 μ M).⁸⁰

4.9. Antimicrobial Activity

Ent-11 β -hydroxyabieta-8(14),13(15)-dien-16,12 α -olide (**16**) showed moderate to strong growth inhibition against *Bacillus cereus*, *B. subtilis*, *Micrococcus flavas*, *Moraxella catarrhalis*, *Neisseria sicca*, and *Candida albicans* CBS 5763 at 12.5 μ g/mL concentration. Jolkinolide A (**9**) also moderately inhibited

Table 65. Secotriterpenoids and Others

no.	name	plant	ref
503	isohelianol	E. antiquorum	144
504	$3,4$ -seco- 8β (H)-ferna- $4(23),9(11)$ -dien- 3 -oic acid	E. chamaesyce	153
505	3,4-seco-oleana-4(23),18-dien-3-oic acid	E. chamaesyce	157
506	camelliol C	E. antiquorum	144
507	lemmaphylla-7,21-dien-3 β -ol	E. antiquorum	144
508	peplusol	E. peplus	145
509	anhydrobisfarnesol	E. laterifiora	158

Table 66. Steroids-1

no.	name	R_1	R_2	plant	ref
510	3β -hydroxy- 4α , 14α -dimethyl- 5α -ergosta- $8, 24(28)$ -dien- 11 -one	H_2	=0	E. chamaesyce	151
511	3β ,11 α -dihydroxy- 4α ,14 α -dimethyl- 5α -ergosta-8,24(28)-dien-7-one	=0	α-OH	E. chamaesyce	151
512	3β , 7α -dihydroxy- 4α , 14α -dimethyl- 5α -ergosta- 8 , $24(28)$ -dien- 11 -one	α-OH	=0	E. chamaesyce	151
513	3β -hydroxy- 4α , 14α -dimethyl- 5α -ergosta- $8, 24(28)$ -dien-7-one	=0	H_2	E. chamaesyce	149
514	3β -hydroxy- 4α , 14α -dimethyl- 5α -ergosta- $8, 24(28)$ -dien- $7, 11$ -one	=0	=0	E. chamaesyce	149
515	obtusifoliol	H_2	H_2	E. chamaesyce	149

Table 67. Steroids-2

no.	name	plant	ref
516	4α , 14α -dimethyl- 5α -ergosta-7, $9(11)$, $24(28)$ -trien- 3β -ol	E. chamaesyce	149
517	5α -stigmastane- 3β , 6α -diol	E. boetica	111
518	5α -stigmastane- 3β , 5, 6β -triol	E. boetica	111
519	geniculatoside F	E. geniculata	159
520	$\overline{3}$ -(β -D-glucopyranosyloxy)stigmast-5-ene	E. peplis	160
521	$(3 \ S,4 \ S,5 \ R,7 \ S,9 \ R,14 \ R)$ -3,7-dihydroxy-4,14-dimethyl-7(8 \rightarrow 9)	E. officinarum	86
	abeocholestan-8-one		

Table 68.Cerebrosides.

no.	name	n	plant	ref
522	(2 S,3 S,4 R,8 Z)-1-O-(β-D-glucopyranosyl)-2-[(2' R)-2'- hydroxy(icosanoyl~octacosanoyl)amino]-8-octadecene-1,3,4-triol	17	E. nicaeensis	161
		19,20	E. sororia	162
		21	E. peplis	163
			E. nicaeensis	161
			E. sororia	162
		22~25	E. sororia	162
523	(2 S,3 S,4 R,8 Z)-1-O-(β-D-glucopyranosyl)-2-[(2' R,15' Z)-2'-hydroxy(tetracos- 15'-enoyl~octacos-19'-enoyl)amino]-8-octadecene-1,3,4-triol	1	E. peplis	163
			E. characias	164
			E. wulfenii	165
		3	E. peplis	163
			E. characias	164
			E. wulfenii	165
		5	E. wulfenii	165
524	(2 $S,3$ $S,4$ $E,8$ $E)$ -1- O -(β -D-glucopyranosyl)-2-[(2' R)-2'-hydroxyhexadecanoy- lamino]-4.8-octadecadiene-1.3-diol	-	E. peplis	163
525	(2 S,3 S,4 R,5 R,6 Z)-1-O-(β-D-glucopyranosyl)-2-[(2' R,15' Z)-2'-hydroxy(tetra- cos-15'-enoyl~octacos-19'-enoyl)amino]-6-octadecene-1.3.4.5-tetraol	1	E. characias	166
	······································	3	E. characias	166
		5	E. characias	166
526	(2 S,3 S,4 R,5 R,6 Z)-1-O-(β-D-glucopyranosyl)-2-[(2' R)-2'-hydroxyoctacosanoy- lamino]-6-octadecene-1,3,4,5-tetrao]	—	E. characias	166
527	(2 S,3 S,4 R,8 E,2' R)-2-(2'-hydroxyeicosanoyl~hexacosanoylamino)-8-octa- cecene-1,3,4-triol	17~23	E. sororia	162

the growth of *M. catarrhalis* at 50 μ g/mL concentration.¹⁵ Helioscopinolide A (**20**) and helioscopinolide B (**21**) showed significant activity against *Staphylococcus aureus* 6538P (2.5 μ g/spot).²⁶ *In vitro* bioassays showed that yuexiandajisu A (**56**) exhibited antibacterial activity.⁴² A mixture of cerebrosides (**522–524**) from *E. peplis*¹⁶³ showed a synergistic antifungal activity against *Candida* spp. and *Cryptococcus neoformans* strain. Moreover, only a single compound **523**

(n = 3) showed an interesting antitubercular activity with MIC of 40 µg/mL on reference strain and on two clinical isolates and a MIC of 80 µg/mL against clinical strain H242. Natarajan et al. researched the antibacterial activity of *E. fusiformis* against pathogenic strains of Gram positive (*Bacillus subtilis* and *S. aureus*) and Gram negative bacteria (*Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhii* A, and S. typhii

B).¹⁷⁷ The different extracts differed significantly in their antibacterial properties with the methanolic extract being very effective followed by acetone and chloroform extracts. Aqueous and ethanolic extract showed the very least activity. Rootstock extracts had better antibacterial properties than leaf extracts. The results of this study supported the use of this plant in traditional medicine to treat fever, wound infections, and intestinal disorders.¹⁷⁷ The ethanolic extracts of aerial parts of *E. hirta* exhibited a broad spectrum of antimicrobial activity against *E. coli*, *P. vulgaris*, *P. aeruginosa*, and *S. aureus*.¹⁷⁸

Compound **438**, isolated from *E. paralias*, showed a moderate antiviral activity ($EC_{50} = 14 \text{ mg/mL}$) against HIV-1 replication. The activity was based on the inhibition of virus-induced cytopathicity in MT-4 cells.⁵⁷ The 7 triterpenes (**458–461**, **503**, **506**, and **507**) isolated from *E. antiquorum* were examined for the inhibitory effects on Epstein–Barr virus early antigen (EBV-EA) activation induced by TPA.

Table 70. Phenolics-1

In this assay, compounds **458**–**461** and **503** showed 100% inhibition of activation at 1000 mol ratio/TPA.¹⁴⁴ The steroids **510**–**516**, isolated from *E. chamaesyce*, also exhibited potent inhibitory effects (100% inhibition of induction at 1000 mol ratio/TPA, about 80% inhibition at 500 mol ratio/TPA, and about 30% inhibition at 100 mol ratio/TPA) in the same assay. Compound **512** showed the most potent inhibitory effects in comparison to oleanolic acid on EBV-EA activation.¹⁵¹

4.10. Antidiarrheal Activity

A significant antidiarrheal effect of the *E. paralias* extracts against castor oil-induced diarrhea in rats was achieved by 400 mg/kg.¹⁷⁹ It decreased the gastrointestinal movement as indicated by the significantly (p < 0.01) decreased distance traveled by the charcoal meal. The large dose of the extract was slightly more effective than the small one. The antidiarrheal effect was also evaluated on the motility of duodenum isolated from freshly slaughtered rabbits. The E. paralias methanol extract produced a transient stimulation followed by inhibition in doses of less than 0.05 mg/kg. Higher concentrations caused rapid muscle relaxation. Tannins, flavonoids, unsaturated sterols/triterpenoids, carbohydrates, lactones and proteins/amino acids were reported as major active constituents of the tested plants.¹⁷⁹ In 2006, Hore et al. reported the aqueous leaf extract of E. hirta decreased the gastrointestinal motility in normal rats and decreased the effect of castor oil-induced diarrhea in mice by 300 and 1000 mg/kg.180

4.11. Antipyretic-Analgesic Activity

Myrsinane 266, isolated from E. decipens whole plant chloroform extract, showed significant analgesic activity when administered to mice at dose of 5-20 mg/kg i.p. This activity is comparable to that of 100 mg/kg of aspirin or ibuprofen.¹⁸¹ Resiniferatoxin (326), an ultrapotent capsaicin analog present in the latex of E. resinifera, interacts at a specific membrane recognition site, expressed by primary sensory neurons mediating pain perception as well as neurogenic inflammation. Desensitization to 326 is a promising approach to mitigate neuropathic pain and other pathological conditions in which sensory neuropeptides released from capsaicinsensitive neurons play a crucial role.¹⁸² Prostratin (340), obtained in E. fischeriana, showed significant analgesic and sedative activities. The 92% and 62% inhibitions were observed in sedative experiments with 20 mg/kg (p.o.) and 1 mg/kg (s.c.) in mice, respectively.⁸ The ethyl acetate

R ₄ O \sim OMe							
no.	name	R_1	R_2	R_3	\mathbb{R}_4	plant	ref
532	2-hydroxy-4,6-dimethoxyacetophenone	Η	Н	Н	Me	E. portulacoides E. quinquecostata	16 30
> 533 534 535 536 537 539	2,4,6-trimethoxyacetophenone 2-hydroxy-4,6-dimethoxy-3-methylacetophenone 2,4,6-trimethoxy-3-methylacetophenone 2,2'-dihydroxy-4,6-dimethoxy-3-methylacetophenone 2,4-dihydroxy-6-methoxyacetophenone	H Me Me H	Me H Me H H	H H OH H	Me Me Me H	E. portulacoides E. portulacoides E. portulacoides E. quinquecostata E. fischeriana	16 16 16 30 13
538 539 540	2,4-dihydroxy-6-methoxy-3-methylacetophenone 2-hydroxy-6-methoxy-3-methylacetophenone $4-\beta$ -D-glucopyranoside ebractelatinoside C	Me Me Me	H H H	H H H	H glc glc→xyl(6→1)	E. ebracteolata E. ebracteolata E. ebracteolata	168 168 168

fraction from the residue of an 85% ethanol extract of the latex of *E. royleana* showed a dose related peripheral analgesic effect. The same fraction exhibited a significant antipyretic effect in hyperthermic rats and rabbits. The oral LD_{50} was more than 2 g/kg in rats and mice.¹⁸³ Following an identified use of the plant as analgesic in traditional medicine, the hexane, chloroform and ethyl acetate extracts of *E. heterophylla* root were tested for antinociceptive activity in rats. All extracts showed significant effects at doses of 150/300 mg/kg.¹⁸⁴

4.12. Molluscicidal and Antifeedant Activities

In 2001 and 2002, Abdelgaleil et al. reported the molluscicidal and antifeedant activities of diterpenoids from E. paralias.^{57,185} Compounds 132, 437, and particularly 441 had high molluscicidal activities on Biomphalaria alexandrina. Antifeedant activity was tested by a conventional leaf disk method against third-instar larvae of Spodoptera littoralis.185 Compounds 142 and 426 were good insect antifeedants with 66.8 and 45.8% antifeedant activity (1000 mg/mL), respectively. Kansenonol (455) and 143 were moderately active at 500 ppm, whereas compounds 132, 144, 424, 428, 437, and 438 showed moderate activity at 500-1000 ppm.⁵⁷ In 2004, Singh et al. reported the aqueous and serially purified latex extracts of plants E. pulcherima and E. hirta had potent molluscicidal activity.¹⁸⁶ Sublethal doses (40 and 80% of LC₅₀) of aqueous and partially purified latex extracts of both the plants also significantly altered the levels of total protein, total free amino acid, nucleic acid (DNA and RNA), and the activity of enzyme protease and acid and alkaline phosphatase in various tissue of the snail Lymnaea acuminata in time and dose dependent manner.

4.13. Inhibitory Activity on the Mammalian Mitochondrial Respiratory Chain

Six diterpenoids (**330**–**334** and **336**) isolated from the latex of *E. obtusifolia* were evaluated for their inhibition of the NADH oxidase activity in submitochondrial particles from beef heart.¹⁸⁷ 12,13-Diisobutyryloxy-4,20-dideoxyphorbol (**330**) was the most potent inhibitor and showed an inhibitory concentration with IC₅₀ value of 2 0.6 \pm 0 0.3 μ M. In the study, some structure–activity trends were suggested for the inhibitory activity of the mammalian mitochondrial respiratory chain of the 4-deoxyphorbol esters, in which two isobutyryloxy groups were located at C-12 and C-13. Compound **330**, the strongest inhibitor of the NADH oxidase activity, had an unfunctionalized *gem*-dimethylcy-clopropane moiety and C-20 was not oxygenated. Less active compounds, such as **333**, **334**, and **335**, C-17 (OAc), and C-20 (OH), were oxygenated.

4.14. Antidipsogenic Activity

The effect of the methanol extract obtained from the leaves and stems of *E. hirta* on thirst was examined using Wistar rats.¹⁸⁸ Intraperitoneal administration of 10 mg/100 mg body wt of the extract significantly (p < 0.05) decreased the amount of water consumed by rats. This effect lasted for 2 h.

4.15. Survival Effect on Fibroblasts PGE₂ In hibition Activity

Kansuinin E (156), isolated from the roots of *E. kansui*, exhibited a specific survival effect on fibroblasts that expressed TrkA with an ED₅₀ value of 0.23 μ g/mL when

compared with TrkB cells.⁶⁴ In contrast, kansuinins A (**184**), D (**186**), and F (**160**) enhanced the survival of both TrkAand TrkB-expressing fibroblasts. TrkA is a high-affinity receptor for nerve growth factor. The survival of these cells was solely dependent on NGF treatment, and they normally died in the absence of NGF. The survival of TrkB-expressing cells was dependent on the presence of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family related to NGF.¹⁸⁹

4.16. PEP Inhibitory Activity

Prolyl endopeptidase (PEP) is the only serine protease that is known to cleave a peptide substrate in the *C*-terminal side of a proline residue and plays an important role in the metabolism of peptide hormones and neuropeptides and is recognized to be involved in learning and memory.¹⁹⁰ Low molecular weight inhibitors of PEP have been reported in the literature, but the majority of these were synthetic.¹⁹¹ Most of the natural PEP inhibitors isolated have been of microbial origin whereas PEP inhibitors from plants have rarely been investigated.¹⁹² The myrsinol-type diterpenoids **276**, **291**, and **292**, isolated from *E. decipiens*, were active against PEP.^{101,105} Compounds **276** and **291** showed IC₅₀ of 3.2 and 10.5 μ M, respectively, with the positive control of Bacitracin. Compound **292** exhibited an IC₅₀ of 16.9 ± 1.3 μ M, which was compared with the positive control of PEP (*Z*-Pro-prolinal, IC₅₀ of 1.27 ± 0.01 μ M).

4.17. Urease Inhibitory Activity

Studies on the enzyme inhibition have led to the discoveries of drugs. Urease inhibitors have recently attracted much attention as potential new antiulcer drugs. Unfortunately, only a few natural products with this activity have been discovered. In 2003, Ahmad et al. reported the isolation of decipinol ester A (**273**) from *E. decipiens*.¹⁰¹ It was the first naturally occurring urease inhibitor.

4.18. Angiotensin Converting Enzyme Inhibiting Activitiy

The methanol extract obtained from the leaves and stems of *E. hirta* inhibited the activity of angiotensin converting enzyme (ACE) by 90 and 50% at 500 and 160 μ g, respectively, using enzyme linked immunosorbent assay (ELISA).¹⁸⁸

4.19. Other Activities

3,4-Dimethoxycinnamaldehyde, isolated from *E. quinquecostata*, was significantly active in the induction of quinone reductase (QR) in Hepa1c1c7 hepatoma cells and in the inhibition of the transformation of murine epidermal JB6 cells with a CD (concentration to double induction) value of 9.5 μ g/mL (52.8 μ M) (QR assay) and an IC₅₀ value of 2.3 μ g/ mL (12.8 μ M) (JB6 assay), respectively.³⁶ The water and ethanol extracts (50 and 100 mg/kg) of *E. hirta* produced time-dependent increase in urine output. Electrolyte excretion was also significantly affected by the plant extracts.¹⁹³ The water extract increased the urine excretion of Na⁺, K⁺, and HCO₃⁻. In contrast, the ethanol extract increased the excretion of HCO₃⁻, decreased the loss of K⁺, and had little effect on renal removal of Na⁺.

5. Conclusion

The genus *Euphorbia* is widespread all over the world. The diterpenoids with jatrophane, lathyrane, tigliane, ingenane, *ent*-abietane, and myrsinol skeletons are among the most studied diterpenoids isolated from *Euphorbia* plants. Other types of diterpenoids, such as segetane, paraliane, pepluane, euphoractine, *ent*-atisnae, *ent*-kaurane, and casbane, along with triterpenes, sesquiterpenoids, steroids, and flavonoids are also important components. The rare compounds are cerebrosides, ellagitannin, neolignan, and manoyloxide, which isolated from *E. characias*,¹⁶³ *E. jolkinii*,¹⁷¹ *E. quinquecostata*,³⁶ and *E. segetalis*,³⁸ respectively. Also, several enzymes have been isolated from the Euphorbiaceae family. The present review shows the majority of the compounds isolated from *Euphorbia*. But the structures of very common compounds such as organic acids and aliphatic hydrocarbons are not given.

The biological research on *Euphorbia* species has supported the use of some plants in traditional medicines or revealed the new activities on modern pharmacological levels. The biological activity includes antiproliferative activity, modulability of multidrug resistance, cytotoxic activity, DNA-damaging activity, antivirus activity, PEP inhibitory activity, antidiarrheal activity, molluscicidal and antifeedant activities, antimicrobial activity, antiinflammatory activity, antipyretic-analgesic activity, inhibitory activity on the mammalian mitochondrial respiratory chain, PGE₂ inhibition activity, antidipsogenic activity, survival effect on fibroblasts, inhibitory activity on urease, effects on the cell division, tumor promoting activity, etc.

The insight of structure–activity relationships study on jatrophane diterpenoids as modulators of multidrug resistance has given us more detailed information about the active core framework and substituents.^{45,51,74} It could help fellow researchers to find more active P-glycoprotein inhibitors.

6. Acknowledgments

We thank the financial supports of Scientific Research Foundation for the Returned Overseas Chinese Scholars of Hebei Province and Scientific Research Foundation of Hebei Province (08B032). We also wish to extend our sincere thanks for the financial support of Syngenta Ltd. (2005-Hebei Medical University-Syngenta-01).

7. References

- (1) Jassbi, A. R. Phytochemistry 2006, 67, 1977.
- (2) Singla, A. K.; Pathak, K. Fitoterapia 1990, 61, 483.
- (3) Jury, S. L., Reynolds, T., Cutler, D. F., Evans, J. F., Eds. *The Euphorbiales: Chemistry, Taxonomy, and Economic Botany*; Academic Press: London,1987.
- (4) Ponsinet, G.; Ourisson, G. Phytochemistry 1968, 7, 89.
- (5) Nielsen, P. E.; Nishimura, H.; Liang, Y.; Calvin, M. *Phytochemistry* 1979, 18, 103.
- (6) Evans, F. J.; Taylor, S. E. Prog. Chem. Org. Nat. Prod. 1983, 44, 1.
- (7) Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A. *Phytochemistry* **1997**, 45, 563.
- (8) Ma, Q. G.; Liu, W. Z.; Wu, X. Y.; Zhou, T. X.; Qin, G. W. Phytochemistry 1997, 44, 663.
- (9) Cateni, F.; Falsone, G.; Zilic, J. *Mini-Rev. Med. Chem.* 2003, *3*, 425.
- (10) Shi, J. G.; Shi, Y. P.; Ji, Z. J. *Phytochemistry* **1997**, *45*, 343.
 (11) Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Tron, G. C.;
- Appendino, G. Eur. J. Org. Chem. 2002, 71.
- (12) Zhang, W.; Guo, Y. W. Chem. Pharm. Bull. 2006, 54, 1037.
- (13) Che, C. T.; Zhou, T. X.; Ma, Q. G.; Qin, G. W.; Williams, I. D.;
 Wu, H. M.; Shi, Z. S. *Phytochemistry* **1999**, *52*, 117.

- (14) Liu, G. F.; Fu, Y. Q.; Yang, Z. Q.; Zhao, H. Q.; Fan, X. M. Zhongyao Tongbao 1988, 5, 291.
- (15)Sutthivaiyakit, S.; Thapsut, M.; Prachayasittikul, V. Phytochemistry 2000, 53, 947
- (16) Morgenstern, T.; Bittner, M.; Silva, M.; Aqueveque, P.; Jakupovic, J. Phytochemistry 1996, 41, 1149
- (17) Satti, N. K.; Suri, O. P.; Dhar, K. L.; Atal, C. K.; Kawasaki, T.; Miyahara, K.; Kawano, S. Phytochemistry 1986, 25, 1411.
- (18) Ahmad, S.; Seligmann, O.; Wagner, H.; Hussain, G. Phytochemistry 1977, 16, 1844.
- (19) Jeske, F.; Jakupovic, J.; Berendsohn, W. Phytochemistry 1995, 40, 1743.
- (20) Wang, W. X.; Ding, X. B. Acta Pharm. Sin. 1998, 33, 128.
- (21) Wang, Y. B.; Huang, R.; Wang, H. B.; Jin, H. Z.; Lou, L. G.; Qin, G. W. J. Nat. Prod. 2006, 69, 967.
- (22) Appendino, G.; Belloro, E.; Tron, G. C.; Jakupovic, J.; Ballero, M. Fitoterapia 2000, 71, 134.
- (23) Appendino, G.; Jakupovic, S.; Tron, G. C.; Jakupovic, J.; Milon, V.; Ballero, M. J. Nat. Prod. 1998, 61, 749.
- (24) Lal, A. R.; Cambie, R. C.; Rutledge, P. S.; Woodgate, P. D. Phytochemistry 1990, 29, 2239.
- (25) Shizuri, Y.; Kosemura, S.; Yamamura, S.; Ohba, S.; Ito, M.; Saito, Y. Chem. Lett. 1983, 65.
- (26) Valente, C.; Pedro, M.; Duarte, A.; Nascimento, M. S. J.; Abreu, P. M.; Ferreira, M. J. U. J. Nat. Prod. 2004, 67, 902.
- (27) Borghi, D.; Ballabio, M.; Arlandini, E.; Crespi Perellino, N.; Minghetti, A.; Francesco Vincieri, F. J. Nat. Prod. 1991, 54, 1503.
- (28) Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A.; Jakupovic, J. J. Nat. Prod. 1999, 62, 110.
- (29) Lal, A. R.; Cambie, R. C.; Rutledge, P. S.; Woodgate, P. D. Phytochemistry 1990, 29, 1925.
- (30) Mbwambo, Z. H.; Lee, S. K.; Mshiu, E. N.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 1996, 59, 1051.
- (31) Satti, N. K.; Suri, O. P.; Thaper, R. K.; Kachroo, P. L. Phytochemistry 1988, 27, 1530.
- (32) Lal, A. R.; Cambie, R. C.; Rutledge, P. S.; Woodgate, P. D.; Rickard, C. E. F.; Clark, G. R. Tetrahedron Lett. 1989, 30, 3205.
- (33) Pan, L.; Zhou, P.; Zhang, X. F.; Peng, S.; Ding, L. S.; Qiu, S. X. Org. Lett. 2006, 8, 2775.
- (34) Ding, Y. L.; Jia, Z. J. Phytochemistry 1991, 30, 2412.
- (35) Wang, H.; Zhang, X. F.; Luo, X. D. Nat. Prod. Res. Dev. 2006, 18, 53.
- (36) Su, B. N.; Park, E. J.; Mbwambo, Z. H.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2002. 65. 1278.
- (37) Satti, N. K.; Suri, O. P.; Dhar, K. L.; Kawasaki, T.; Miyahara, K.; Noda, N. J. Nat. Prod. 1987, 50, 790.
- (38) Jakupovic, J.; Jeskt, F.; Morgenstern, T.; Tsichritzis, F.; Marco, J. A.; Berendohn, W. Phytochemistry 1998, 47, 1583.
- (39) Wang, Y. B.; Yao, G. M; Wang, H. B.; Qin, G. W. Chem. Lett. 2005, 34, 1160.
- (40) Zhou, T. X.; Bao, G. H.; Ma, Q. G.; Qin, G. W.; Che, C. T.; Lv, Y.; Wang, C.; Zheng, Q. T. Tetrahedron Lett. 2003, 44, 135.
- (41) Pei, Y. H.; Koike, K.; Han, B.; Jia, Z. H.; Nikaido, T. Tetrahedron Lett. 1999, 40, 951.
- (42) Xu, Z. H.; Sun, J.; Xu, R. S.; Qin, G. W. Phytochemistry 1998, 49, 149
- (43) Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A.; Jakupovis, J.; Jeske, F. Phytochemistry 1998, 47, 1621.
- (44) Jakupovic, J.; Morgenstern, T.; Bittner, M.; Silva, M. Phytochemistry 1998, 47, 1601.
- (45) Corea, G.; Fattorusso, E.; Lanzotti, V.; Motti, R.; Simon, P. N.; Dumontet, C.; Di Pietro, A. J. Med. Chem. 2004, 47, 988.
- (46) Appendino, G.; Spagliardi, P.; Ballero, M.; Seu, G. Fitoterapia 2002, 73. 576.
- (47) Miglietta, A.; Gabriel, L.; Appendino, G.; Bocca, C. Cancer Chemother. Pharmacol. 2003, 51, 67
- (48) Liu, L. G.; Tan, R. X. J. Nat. Prod. 2001, 64, 1064.
- (49) Hohmann, J.; Rédei, D.; Forgo, P.; Molnár, J.; Dombi, G.; Zorig, T. J. Nat. Prod. 2003, 66, 976.
- (50) Marco, J. A.; Sanz-Cervera, J. F.; Checa, J.; Palomares, E.; Fraga, B. M. Phytochemistry 1999, 52, 479.
- (51) Corea, G.; Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Appendino, G.; Ballero, M.; Simon, P. N.; Dumontet, C.; Di Pietro, A J. Med. Chem. 2003, 46, 3395.
- (52) Pan, L.; Zhang, X. F.; Deng, Y.; Wang, H.; Wu, D. G.; Luo, X. D. Helv. Chim. Acta 2003, 86, 2525.
- (53) Günther, G.; Hohmann, J.; Vasas, A.; Máthé, I.; Dombi, Gy.; Jerkovich, Gy. Phytochemistry 1998, 47, 1309.
- (54) Günther, G.; Martinek, T.; Dombi, G.; Hohmann, J.; Vasas, A. Magn. Reson. Chem. 1999, 37, 365.
- (55)Hohmann, J.; Vasas, A.; Günther, G.; Dombi, Gy.; Blazsó, G.; Falkay, Gy.; Máthé, I.; Jerkovich, Gy. Phytochemistry 1999, 51, 673.

- (56) Corea, G.; Fattorusso, C.; Fattorusso, E.; Lanzotti, V. Tetrahedron 2005, 61, 4485.
- Abdelgaleil, S. A. M.; Kassem, S. M. I.; Doe, M.; Baba, M.; Nakatani, (57)M. Phytochemistry 2001, 58, 1135.
- (58) Hohmann, J.; Vasas, A.; Günther, G.; Máthé, I.; Evanics, F.; Dombi, G.; Jerkovich, Gy. J. Nat. Prod. 1997, 60, 331.
- (59) Jakupovic, J.; Morgenstern, T.; Marco, J. A.; Berendsohn, W. Phytochemistry 1998, 47, 1611.
- (60) Ferreira, A. M. V. D.; Carvalho, L. H. M.; Carvalho, M. J. M.; Sequeira, M. M.; Silva, A. M. S. *Phytochemistry* **2002**, *61*, 373.
- (61) Valente, C.; Pedro, M.; Ascenso, J. R.; Abreu, P. M.; Nascimento, M. S. J.; Ferreira, M. J. U. Planta Med. 2004, 70, 244.
- (62) Wang, L. Y.; Wang, L. N.; Yao, X. S.; Miyata, S.; Kitanaka, S. Chem. Pharm. Bull. 2003, 51, 935.
- (63) Hohmann, J.; Evanics, F.; Dombi, G.; Molnár, J.; Szabó, P. Tetrahedron 2001, 57, 211.
- (64) Pan, Q.; Ip, F. C. F.; Ip, N. Y.; Zhu, H. X.; Min, Z. D. J. Nat. Prod. 2004, 67, 1548.
- (65) Wang, L. Y.; Wang, N. L.; Yao, X. S.; Miyata, S.; Kitanaka, S. J. Nat. Prod. 2002, 65, 1246.
- (66) Hohmann, J.; Molnár, J.; Rédei, D.; Evanics, F.; Forgo, P.; Kálmán, A.; Argay, G.; Szabó, P. J. Med. Chem. 2002, 45, 2425.
- (67) Hohmann, J.; Forgo, P.; Csupor, D.; Schlosser, G. Helv. Chim. Acta 2003, 86, 3386.
- (68) Lu, Z. Q.; Guan, S. H.; Li, X. N.; Chen, G. T.; Zhang, J. Q.; Huang, H. L.; Liu, X.; Guo, D. A J. Nat. Prod. 2008, 71, 873.
- Valente, C.; Ferreira, M. J. U.; Abreu, P. M.; Gyémánt, N.; Ugocsai, (69) K.; Hohmann, J.; Molnár, J. Planta Med. 2004, 70, 81
- Valente, C.; Ferreira, M. J. U.; Abreu, P. M.; Pedro, M.; Cerqueira, F.; Nascimento, M. S. J. Planta Med. 2003, 69, 361.
- (71) Rédei, D.; Hohmann, J.; Evanics, F.; Forgo, P.; Szabó, P.; Máthé, I. Helv. Chim. Acta 2003, 86, 280.
- (72) Hohmann, J.; Rédei, D.; Evanics, F.; Kálmán, A.; Argay, G.; Bartók, T. Tetrahedron 2000, 56, 3619.
- (73) Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A.; Jakupovic, J.; Lex, J. J. Org. Chem. 1996, 61, 1707.
- (74) Corea, G.; Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Appendino, G.; Ballero, M.; Simon, P. N.; Dumontet, C.; Di Pietro, A. Bioorg. Med. Chem. 2003, 11, 5221.
- (75) Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A.; Jakupovic, J. Phytochemistry 1997, 45, 137.
- (76) Hohmann, J.; Evanics, F.; Dombi, G.; Szabó, P. Tetrahedron Lett. 2001, 42, 6581.
- Marco, J. A.; Sanz-Cervera, J. F.; Ropero, F. J.; Checa, J.; Fraga, B. M. Phytochemistry 1998, 49, 1095
- (78) Ahmed, A. A.; Couladis, M.; Mahmoud, A. A.; Adams, A.; Mabry, T. J. Fitoterapia 1999, 70, 140.
- (79) Khan, A. Q.; Malik, A. J. Nat. Prod. 1990, 53, 728
- (80) Ravikanth, V.; Reddy, V. L. N.; Rao, T. P.; Diwan, P. V.;
- Ramakrishna, S.; Venkateswarlu, Y. Phytochemistry 2002, 59, 331. Connolly, D. J.; Fakunle, O. C.; Rycroft, S. D. Tetrahedron Lett. (81)1984. 25. 3773.
- (82) Lin, L. J.; Kinghorn, D. Phytochemistry 1983, 22, 2795.
- (83) Opferkuch, H. J.; Hecker, E. Tetrahedron Lett. 1973, 3611
- (84) Ravikanth, V.; Reddy, V. L. N.; Reddy, A. V.; Ravinder, K.; Rao, T. P.; Ram, T. S.; Kumar, K. A.; Vamanrao, D. P.; Venkateswarlu, Y. Chem. Pharm. Bull. 2003, 51, 431.
- (85) Fatope, M. O.; Zeng, L.; Ohayagha, J. E.; McLaughlin, J. L. Bioorg. Med. Chem. Lett. 1996, 4, 1679.
- (86) Daoubi, M.; Marquez, N.; Mazoir, N.; Benharref, A.; Hernández-Galán, R.; Muñoz, E.; Collado, I. G. Bioorg. Med. Chem. 2007, 15, 4577.
- (87) Vasas, A.; Hohmann, J.; Forgo, P.; Szabó, P. Tetrahedron 2004, 60, 5025.
- (88) Appendino, G.; Tron, G. C.; Cravotto, G.; Palmisano, G.; Jakupovic, J. J. Nat. Prod. 1999, 62, 76.
- (89) Hohmann, J.; Evanics, F.; Vasas, A.; Dombi, G.; Jerkovich, G.; Máthé, I. J. Nat. Prod. 1999, 62, 176.
- (90) Appendino, G.; Belloro, E.; Tron, G. C.; Jakupovic, J.; Ballero, M. J. Nat. Prod. 1999, 62, 1399.
- (91) Liao, S. G.; Zhan, Z. J.; Yang, S. P.; Yue, J. M. Org. Lett. 2005, 7, 1379
- (92) Appendino, G.; Porta, C. D.; Conseil, G.; Sterner, O.; Mercalli, E.; Dumontet, C.; Pietro, A. D. J. Nat. Prod. 2003, 66, 140.
- (93) Adolf, W.; Köhler, I.; Hecker, E. Phytochemistry 1984, 23, 1461.
- (94) Wang, H.; Zhang, X.; Zhou, Y.; Ascenso, J. R.; Abreu, P. M.; Nascimento, M. S. J.; Ferreira, M. J. U. Planta Med. 2004, 70, 244.
- (95) Gao, S.; Liu, H. Y.; Wang, Y. H.; He, H. P.; Wang, J. S.; Di, Y. T.; Li, C. S.; Fang, X.; Hao, X. J. Org. Lett. 2007, 9, 3453.
- (96)Zahid, M.; Husani, S. R.; Abbas, M.; Pan, Y.; Jassbi, A. R.; Asim, M.; Parvez, M.; Voelter, W.; Ahmad, V. U. Helv. Chim. Acta 2001, 84. 1980.

- (97) Ahmad, V. U.; Hussain, H.; Jassbi, A. R.; Zahid, M.; Hussain, J.; Bukhari, I. A.; Yasin, A.; Choudhary, M. I. Pol. J. Chem. 2002, 76, 1699.
- (98) Ahmad, V. U.; Jassbi, A. R.; Parvez, M. Tetrahedron 1998, 54, 1573.
- (99) Jassbi, A. R.; Fukushi, Y.; Tahara, S. Helv. Chim. Acta 2002, 85, 1706.
- (100) Ahmad, V. U.; Hussain, H.; Hussain, J.; Bukhari, I. A.; Yasin, A.; Choudhary, M. I.; Dar, A. Z. Naturforsch. 2002, 57C, 1066.
- (101) Ahmad, V. U.; Hussain, J.; Hussain, H.; Jassbi, A. R.; Ullah, F.; Lodhi, M. A.; Yasin, A.; Choudhary, M. I. Chem. Pharm. Bull. 2003, 51, 719.
- (102) Ahmad, V. U.; Jassbi, A. R. Planta Med. 1998, 64, 732.
- (103) Zhang, W. J.; Chen, D. F.; Hou, A. J. Chin. J. Chem. 2004, 22, 103.
- (104) Öksüz, S.; Gürek, F.; Gil, R. R.; Pengsuparp, T.; Pezzuto, J. M.; Cordell, G. A. Phytochemistry 1995, 38, 1457.
- (105) Ahmad, V. U.; Hussain, H.; Jassbi, A. R.; Hussain, J.; Bukhari, I. A.; Yasin, A.; Aziz, N.; Choudhary, M. I. J. Nat. Prod. 2003, 66, 1221.
- (106) Abbas, M.; Jassbi, A. R.; Zahid, M.; Ali, Z.; Alam, N.; Akhtar, F.; Choudhary, M. I.; Ahamad, V. U. Helv. Chim. Acta 2000, 83, 2751.
- (107) Zhang, J.; Yang, C. J.; Wu, D. G. Chin. Tradit. Herb. Drugs 1998, 29, 73.
- (108) Ahmad, V. U.; Jassbi, A. R. J. Nat. Prod. 1999, 62, 1016.
- (109) Öksüz, S.; Gürek, F.; Qiu, S. X.; Cordell, G. A. J. Nat. Prod. 1998, 61. 1198.
- (110) Wu, D. G.; Sorg, B.; Hecher, E. J. Nat. Prod. 1995, 58, 408.
- (111) Ferreira, M. J. U.; Ascenso, J. R. Phytochemistry 1999, 51, 439.
- (112) Ahmad, V. U.; Jassbi, A. R. Phytochemistry 1998, 48, 1217.
- (113) Öksüz, S.; Gürek, F.; Lin, L. Z.; Gil, R. R.; Pezzuto, J. M.; Cordell, G. A. Phytochemistry 1996, 42, 473.
- (114) Shi, Y. P.; Jia, Z. J.; Jamil, L.; Sadiq, S. Phytochemistry 1995, 40, 1219.
- (115) Duarte, N.; Ferreira, M. J. U. Org. Lett. 2007, 9, 489.
- (116) Schmidt, R. J.; Evans, J. F. Phytochemistry 1976, 15, 333.
- (117) Schmidt, R. J.; Evans, J. F. Phytochemistry 1976, 15, 1778.
- (118) Hergenhahn, M.; Adolf, W.; Hecker, E. Tetrahedron Lett. 1975, 1595.
- (119) Adolf, W.; Sorg, B.; Hergenhahn, M.; Hecker, E. J. Nat. Prod. 1982, 45.347.
- (120) Haba, H.; Lavaud, C.; Harkat, H.; Alabdul Magid, A.; Marcourt, L.; Benkhaled, M. Phytochemistry 2007, 68, 1255.
- (121) Miana, G. A.; Bashir, M.; Evans, F. J. Planta Med. 1985, 51, 353.
- (122) Schmidt, R. J.; Evans, J. F. Lloydia 1977, 40, 225.
- (123) Fatope, M. O.; Zeng, L.; Ohayaga, J. E.; Shi, G.; McLaughlin, J. L. J. Med. Chem. 1996, 39, 1005.
- (124) Baloch, I. B.; Baloch, M. K.; Saqib, Q. N. Eur. J. Med. Chem. 2008, 43. 274.
- (125) Li, Y. L.; Suo, Y. R. Zhongcaoyao 2005, 36, 1763.
- (126) Pan, D. J.; Hu, C. Q.; Chang, J. J. Phytochemistry 1991, 30, 1018.
- (127) Itokawa, H.; Ichihara, Y.; Watanabe, K.; Takeya, K. Planta Med. **1989**, *55*, 271.
- (128) Vogg, G.; Mattes, E.; Rothenburger, J.; Hertkorn, N.; Achatz, S.; Sandermann, H. Phytochemistry 1999, 51, 289.
- (129) Uemura, D.; Ohwaki, H.; Hirata, Y.; Chen, Y. P.; Hsu, H. Y. Tetrahedron Lett. 1974, 29, 2527.
- (130) Baloch, I. B.; Baloch, M. K.; Saqib, Q. N. Helv. Chim. Acta 2005, 88, 3145.
- (131) Lin, L. J.; Marshall, G. T.; Kinghorn, A. D. J. Nat. Prod. 1983, 46, 723.
- (132) Lin, L. J.; Kinghorn, A. D. J. Agric. Food Chem. 1983, 31, 396.
- (133) Lu, Z. Q.; Yang, M.; Zhang, J. Q.; Chen, G. T.; Huang, H. L.; Guan, S. H.; Ma, C.; Liu, X.; Guo, D. A. Phytochemistry 2008, 69, 812.
- (134) Ott, H. H.; Hecker, E. Experientia 1981, 37, 88.
- (135) Kamimura, D.; Ijichi, K.; Shigeta, S.; Baba, M.; Fujiwara, M.; Yokota, T.; Tokuhisa, K.; Watanabe, H. Chem. Abstr. 1996, 126, 65375; JP Patent 08245379, 1996.
- (136) Madureira, A. M.; Gyémánt, N.; Ascenso, J. R.; Abreu, P. M.; Molnár, J.; Ferreira, M. J. U. J. Nat. Prod. 2006, 69, 950.
- (137) Öksüz, S.; Gürek, F.; Yang, S.; Lin, L.; Cordell, G. A.; Pezzuto, J. M.; Wagner, H.; Lotter, H. Tetrahedron 1997, 53, 3215.
- (138) Barile, E.; Lanzotti, V. Org. Lett. 2007, 9, 3603.
- (139) Hohmann, J.; Günther, G.; Vasas, A.; Kálmán, A.; Argay, G. J. Nat. Prod. 1999, 62, 107.
- (140) Corea, G.; Fattorusso, E.; Lanzotti, V.; Meglio, P.; Maffia, P.; Grassia, G.; Ialenti, A.; Ianaro, A. J. Med. Chem. 2005, 48, 7055.
- (141) Shi, J. G.; Jia, Z. J.; Yang, L. Phytochemistry 1993, 32, 208.
- (142) Shi, J. G.; Jia, Z. J. Phytochemistry 1995, 38, 1445.
- (143) Wang, L. Y.; Wang, N. L.; Yao, X. S.; Miyata, S.; Kitanaka, S. J. Nat. Prod. 2003, 66, 630.

- (144) Akihisa, T.; Wijeratne, E. M. K.; Tokuda, H.; Enjo, F.; Toriumi, M.; Kimura, Y.; Koike, K.; Nikaido, T.; Tezuka, Y.; Nishino, H. J. Nat. Prod. 2002, 65, 158.
- (145) Berkowitz, J. D.; Giner, J.-L.; Andersson, T. J. Nat. Prod. 2000, 63, 267.
- (146) Lima, E. M. C.; Medeiros, J. M. R.; Davin, L. B. Phytochemistry 2003, 63, 421.
- (147) Zhang, L. H.; Zhang, G. T.; Ye, W. C.; Yin, Z. Q.; Zheng, D.; Zhao, S. X. Nat. Prod. Res. Dev. 2006, 18, 58.
- (148) Liu, R. H.; Kong, L. Y. Nat. Prod. Res. Dev. 2005, 17, 437.
- (149) Tanaka, R.; Kasubuchi, K.; Kita, S.; Matsunaga, S. Phytochemistry 1999, 41, 457.
- (150) Ferreira, M. J. U.; Margarida, A.; Ascenso, J. R. Phytochemistry 1998, 49.179.
- (151) Tanaka, R.; Kasubuchi, K.; Kita, S.; Tokuda, H.; Nishino, H.; Matsunaga, S. J. Nat. Prod. 2000, 63, 99.
- (152) Ferreira, M. J. U. Doctoral Thesis, University of Lisbon, Lisbon, 1990.
- (153) Tanaka, R.; Ida, T.; Kita, S.; Kamisako, W.; Matsunaga, S. Phytochemistry 1996, 41, 1163.
- (154) Fu, G. M.; Yu, B. Y.; Zhu, D. N. J. Chin. Pharm. Uni. 2003, 34, 377.
- (155) Liu, W. C.; He, Z. Y.; Gu, X. F.; Wu, X. Y.; Qin, G. W. J. Chin. Mater. Med. 2001, 26, 180.
- (156) Ilyas, M.; Parveen, M.; Amin, K. M. Y. Phytochemistry 1998, 48, 561.
- (157) Tanaka, R.; Ida, T.; Takaoka, Y.; Kita, S.; Kamisako, W.; Matsunaga, S. Phytochemistry 1994, 36, 129.
- (158) Faure, S.; Connolly, J. D.; Fakunle, C. O.; Piva, O. Tetrahedron 2000, 56, 9647.
- (159) Rahman, A.; Ali, M.; Khan, N. Z. Pharmazie 2002, 57, 643.
- (160) Cateni, F.; Zilic, J.; Falsone, G.; Kralj, B.; Tubaro, A.; Sosa, S. Pharm. Pharmaco. Lett. 2001, 11, 49.
- (161) Cateni, F.; Zilic, J.; Falsone, G.; Hollan, F.; Frausin, F.; Scarcia, V. Farmaco 2003, 58, 809.
- (162) Zhang, W. K.; Xu, J. K.; Zhang, X. Q.; Yao, X. S.; Ye, W. C. Chem. Phys. Lipids 2007, 148, 77.
- (163) Cateni, F.; Zilic, J.; Falsone, G.; Scialino, G.; Banfi, E. Bioorg. Med. Chem. Lett. 2003, 13, 4345.
- (164) Falsone, G.; Cateni, F.; Baumgartner, M.; Lucchini, V.; Wagner, H.; Seligmann, O. Z. Naturforsch. 1994, 49C, 135.
- (165) Falsone, G.; Cateni, F.; Vrevez, I.; Wagner, H.; Haslinger, E.; Presser, A. Pharm. Pharmacol. Lett. 1998, 8, 16.
- (166) Falsone, G.; Cateni, F.; Katusian, F.; Wagner, H.; Seligmann, O.; Pellizer, G.; Asaro, F. Z. Naturforsch. **1993**, 48C, 1121. (167) Cateni, F.; Falsone, G.; Vitrotti, E.; Ziliz, J.; Birkofer, L.; Della
- Loggia, R.; Sosa, S. Pharm. Pharmacol. Lett. 2000, 10, 65.
- (168) Wang, W. X.; Ding, X. B. Acta Pharm. Sin. 1999, 34, 514.
 (169) Liu, X.; Ye, W. C.; Yu, B.; Zhao, S. X.; Wu, H. M.; Che, C. T. Carbohydr. Res. 2004, 339, 891.
- (170) Nishimura, H.; Wang, L. Y.; Kusano, K.; Kitanaka, S. Chem. Pharm. Bull. 2005, 53, 305.
- (171) Lee, S. H.; Tanaka, T.; Nonaka, G. I.; Nishioka, I. J. Nat. Prod. 2004, 67, 1018.
- (172) Ruan, H. L.; Zhou, X. F.; Zhang, Y. H.; Pi, H. F.; Wu, J. Z.; Sun, H. D. Fitoterapia 2007, 78, 72.
- (173) Kuo, P. L.; Cho, C. Y.; Hsu, Y. L.; Lin, T. C.; Lin, C. C. Toxicol. Appl. Pharmacol. 2006, 213, 37.
- (174) Bani, S; Kaul, A.; Jaggi, B. S.; Suri, K. A.; Suri, O. P.; Sharma, O. P. Fitoterapia 2000, 71, 655.
- (175) Bani, S.; Singh, S.; Singh, G. B.; Banerjee, S. K. Phytother. Res. 1997, 11, 76.
- (176) Singh, G. D.; Kaiser, P.; Youssouf, M. S.; Singh, S.; Khajuria, A.; Koul, A.; Bani, S.; Kapahi, B. K.; Satti, N. K.; Suri, K. A.; Johri, R. K. Phytother. Res. 2006, 20, 316.
- (177) Natarajan, D.; Britto, S. J.; Srinivasan, K.; Nagamurugan, N.; Mohanasundari, C.; Perumal, G. J. Ethnopharmacol. 2005, 102, 123.
- (178) Sudhakar, M.; Rao Ch, V.; Rao, P. M.; Raju, D. B.; Venkateswarlu, Y. Fitoterapia 2006, 77, 378.
- (179) Atta, A. H.; Mouneir, S. M. Phytother. Res. 2005, 19, 481.
- (180) Hore, S. K.; Ahuja, V.; Mehta, G.; Kumar, P.; Pandey, S. K.; Ahmad, A. H. Fitoterapia 2006, 77, 35.
- (181) Ahmad, V. U.; Hussain, H.; Bukhari, I. A.; Hussain, J.; Jassbi, A. R.; Dar, A. Fitoterapia 2005, 76, 230.
- (182) Appendino, G.; Szallasi, A. Life Sci. 1997, 60, 681.
- (183) Bani, S.; Suri, K. A.; Suri, O. P.; Sharma, O. P. Phytother. Res. 1997, 11. 597.
- (184) Vamsidhar, I.; Habeeb Mohammed, A.; Nataraj, B.; Madhusudana Rao, C.; Ramesh, M. Fitoterapia 2000, 71, 562.
- (185) Abdelgaleil, S. A.M.; EI-Aswad, A. F.; Nakatani, M. Pest. Manag. Sci. 2002, 58, 479.
- (186) Singh, S. K.; Yadav, R. P.; Singh, D.; Singh, A. Enviro. Toxicol. Pharm. 2004, 15, 87.

- (187) Betancur-Galvis, L.; Palomares, E.; Marco, J. A.; Estornell, E. J. Ethnopharmacol. 2003, 85, 279.
- (188) Williams, L. A. D.; Gossell-Williams, M.; Sajabi, A.; Barton, E. N.; Fleischhacker, R. *Phytother. Res.* **1997**, *11*, 401.
- (189) Ip, N. Y.; Yancopoulos, G. D. Annu. Rev. Neurosci. 1996, 19, 491.
- (190) Anis, I.; Ahmed, S.; Malik, A.; Yasin, A.; Choudhary, M. I. Chem. Pharm. Bull. 2002, 50, 515.
- (191) Wallen, E. A. A.; Christiaans, J. A. M.; Forsberg, M. F.; Venäläinen, P. T. M.; Gynther, J. J. Med. Chem. 2002, 45, 4581.
- (192) Lee, K. H.; Kwak, J. H.; Lee, K. B.; Song, K. S. Arch. Pharm. Res. 1998, 21, 207.
- (193) Johnson, P. B.; Abdurahman, E. M.; Tiam, E. A.; Abdu-Aguye, I.; Hussaini, I. M. J. Ethnopharmacol. 1999, 65, 63.

CR078350S